
On the Suitability of Skyline Queries for Data Exploration

Sean Chester, Michael L. Mortensen, and Ira Assent
Data-Intensive Systems, Aarhus Universitet

Åbogade 34 8200-Århus N, Denmark
{schester, illio, ira}@cs.au.dk

ABSTRACT

The skyline operator has been studied in database research
for multi-criteria decision making. Until now the focus has
been on the e�ciency or accuracy of single queries. In
practice, however, users are increasingly confronted with
unknown data collections, where precise query formulation
proves di�cult. Instead, users explore the data in a sequence
of incrementally changing queries to the data to match their
understanding of the data and task. In this work, we study
the skyline operator as a tool in such exploratory querying
both analytically and empirically. We show how its results
evolve as users modify their queries, and suggest using our
findings to guide users in formulating reasonable queries.

1. INTRODUCTION
Say you have never been to America and you find yourself

in Manhattan searching for a restaurant. Where do you
even begin? Probably, you want something close, but quite
what is “close” may not be clear. If you might go to a show
later, several locations can be equally valid reference points
for “close.” Perhaps you prefer something inexpensive, but
having never been to Manhattan, what really is“expensive”?
Search sites can help, but only if you know for what to look.

The skyline operator is said to be useful in this context,
because it identifies the data points (restaurants) that ex-
press the best trade-o↵s between the dimensions of interest
(proximity, rating, and price). But what if the user wants to
explore the data, and may evolve new preferences through-
out the process? He/she may decide that price, afterall, is
no concern, or not to look at any more pizzerias. For the
skyline to be useful in this interactive process, it is crucial
that one can continually add constraints and change dimen-
sions of interest without completely changing the results that
he/she sees. If the skyline filters too many points that it did
not filter before, the user will likely be as mystified as the
users in the skyline user study of Magnani et al. [8].

An interactive skyline has been assumed in several con-
texts (e.g., skycube computation [5], dynamic skylines [4],
visualization [8], anytime computation [9], and preference
elicitation [1, 7]), but how the interaction a↵ects the skyline

c
� 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Figure 1: Example of a skyline. The black points are in the
skyline because no other points have, relative to them, both
a higher rating and proximity.

is not well understood. If a small query changes produce rad-
ically di↵erent skylines, which is theoretically possible (Sec-
tion 3), then an interactive skyline would not make sense.

Nevertheless, if the skyline accomodates making incre-
mental changes to a query formulation, it has potential to
help an exploratory user. So, in this paper, we take a first
look at how suitable the skyline is when repeatedly executed
on slightly di↵erent views of the data. In particular, we ask:

1. What can theoretically happen to the results of a sky-
line when a query is incrementally vs. arbitrarily re-
formulated (Section 3)?

2. Does being in one skyline make being in a skyline for
similar queries more likely? Or is one query’s result
uninteresting once the user’s preferences evolve?

3. How often are the theoretical e↵ects in Section 3 empir-
ically observed in real and synthetic data (Section 4)?

2. BACKGROUND
Figure 1 illustrates the skyline [2], a filtration tool. Given

a set D of n points p = (p
0

, . . . , pd�1

) in d dimensions, the
skyline consists of all points p 2 D that are not dominated
by any other points q 2 D. A point q dominates another
point p if 80 i < d, qi � pi and 90 i < d, qi > pi.

1

That is to say, for any pair of non-equal points, if one is in
the skyline it must have a higher value than the other on

1The assumption of preferring larger values is WLOG: one
can multiply any attribute by �1 in preprocessing.

161

some attribute. The skyline consists of all points that are
not inferior to some other point.

However, the number of skyline points can be quite large [3]
and a user may find only some dimensions and values to be
interesting; so, the skyline operator should be combined with
subspace projections (then called a subspace skyline [12])
and with range constraints (then called a constrained sky-
line [10]). Our general form of a skyline query is then:

select <subspace>
from <tables>
where <range constraints>
skyline <min/max specifications>

A user specifies dimensions are of interest (the subspace),
min and max values for those dimensions (range constraints),
and whether he/she prefers smaller or larger values on each
attribute (the specifications). To (logically) execute such a
query, one first applies the constraints and projections, and
then computes the skyline of the resultant, filtered dataset.

In an exploratory context, the skyline is not the termi-
nus of the process. After observing the results, the user will
reformulate the query to match evolved understanding in
an incremental manner. That is to say, subsequent queries
in an exploratory process are not disjoint, because if they
were, that would imply that the user is completely dissat-
isfied with the results of the first search, since he/she de-
liberately excluded them from the second search. This is
e↵ectively restarting. We will focus on largely overlapping
queries, which suggest some successful interactivity.

More precisely, we define an incremental change as ad-
ditions or removals of subspace dimensions or an edit to
one range constraint. Such incremental changes can pro-
duce query results similar to the ones before. Any larger
changes can be decomposed into a sequence of incremental
ones. However, while the points satisfying the constraints
likely are similar after an incremental change, the extent to
which the skyline changes is not well known.

Problem statement

Given a baseline query, consisting of a subspace projection
and a set of range constraints, and an incremental change to
that query, how many points do the skyline of the baseline
and the skyline of the modified query have in common?

3. THEORETICAL EFFECTS
In this section, we look at what can happen to the results

of a skyline query after an incremental change.

3.1 Effect of varying constraints
Consider a skyline query applied to some baseline con-

straints (Figure 2). The results are very specific to the con-
straints posed; for example, although points p and l would
be part of the skyline if there were no constraints, neither
match any user constraints. On the other hand, whereas g
and h are not part of the unconstrained skyline, they become
skyline points if l is eliminated by the constraints.

In fact, every point can be part of the skyline for some
set of constraints and no point is guaranteed to always be a
skyline point. Therefore, an arbitrary change in constraints
can have unpredictable consequences to the skyline: possibly
adding new skyline points, removing existing ones, or both.

What we show here, however, is that if a user makes only
an incremental change, the behaviour is predictable. There

are four e↵ects that can be observed, two types of skyline
point addition and two types of skyline point removal:

1. Addition (A): A point only satisfies the new con-
straints and so becomes a skyline point;

2. Removal (R): An existing skyline point only satisfies
the old constraints and so is removed from the skyline;

3. Promotion (P): A point becomes a new skyline point
because all the points that dominated it are removed
by the new constraints;

4. Demotion (D): An existing skyline point is removed
from the skyline because it becomes dominated by
some point that only satisfies the new constraints, but
not the old ones.

Although an arbitrary change to constraints can induce
any or all e↵ects, an incremental change cannot. On a given
attribute, there can be both an upper (U) and a lower (L)
constraint, either of which can be increased (I) or decreased
(D). We analyze each of these four cases:

LD. In Figure 2(b), the lower constraint is decreased. This
adds a to the skyline, which has a high y-value but had an
x-value outside the constraints. An LD change to dimension
D can add points to the skyline if they are in the subspace
skyline on the remaining dimensions, but it can never re-
move or promote points. New points have lower D-values
than, and so could never dominate, existing skyline points.

LI. In Figure 2(c), the lower constraint is increased. This
removes d from the skyline: it no longer matches the con-
straints. LI changes to dimension D consider no new points
(so cannot add) and remove those smallest on D. Their re-
moval cannot result in a promotion, because points satisfy-
ing the new constraints must have a higher D-value so can-
not have been previously dominated by the removed points.

UD. In Figure 2(d), the upper constraint is decreased. The
points n and k are removed, but point i, which was dom-
inated by k, is promoted. The add e↵ect cannot occur,
because all points matching the new constraints matched
the old constraints. Therefore, for a point q to become a
new skyline point subject to the new constraints, the point
that dominated q in the old constraints must be eliminated.

UI. In Figure 2(e), the upper constraint is increased. Con-
sequently, points l and m are added and points {g, h, k, n}

are all demoted because they are dominated by l. Exist-
ing skyline points cannot be simply removed, because they
necessarily match the new constraints: they can only be
eliminated from the skyline by becoming dominated.

A user can control which of the e↵ects could happen by
making an incremental change (one constraint), e.g., LU to
decrease the skyline size. Composing constraint modifica-
tions on di↵erent attributes is only predictable if the modi-
fications are all of the same type. How much each of these
e↵ects is observed we evaluate empirically (Section 4).

3.2 Effect of varying subspace projections
Incremental changes to subspace projections can also cre-

ate four e↵ects. As with the constrained skylines, there are
two types of skyline addition and two types of removal:

162

(a) Dec. lower const. (LD) (b) Inc. lower const. (LI) (c) Dec. upper const. (UD) (d) Inc. upper const. (UI)

Figure 2: The four incremental constraint changes. The solid rectangle shows the baseline constraints and the dotted lines
indicate the modification to the constraints. Solid points are in the skyline and hollow points are not. A plus indicates an
addition; a minus, a removal; an upwards arrow, a promotion; and a downwards arrow, a demotion.

1. Addition (A): A point dominated in the old subspace
becomes incomparable to the points that dominated it,
and thus becomes a skyline point in the new subspace;

2. Removal (R): A skyline point in the old subspace
is now dominated in the new subspace, so no longer
belongs to the skyline;

3. Homogenization (H): A point not in the skyline in
the old subspace becomes a skyline point because it is
identical to some skyline point in the new subspace;

4. Di↵erentiation (D): A skyline point that was iden-
tical to another skyline point in the old subspace is
dominated by that skyline point in the new subspace.

For an example, consider the dataset, D

ex

, below, and the
incremental addition of subspace dimensions, from {x

0

} to
{x

0

, x
1

} to {x
0

, x
1

, x
2

} (i.e., just the first value of each point,
then the first two, then all three).

D

ex

=

8
><

>:

p = (1, 2, 2)

q = (1, 1, 2)

r = (0, 2, 3)

To begin, the skyline in x
0

is {p, q}, since p and q both
have higher values than r on x

0

, but not than each other. By
adding dimension x

1

, the skyline becomes {p}, an instance
of di↵erentiation. Point q is removed from the skyline be-
cause it is no longer identical to point p, instead now domi-
nated by it. Finally, adding the last dimension, the skyline
becomes {p, r}, an instance of addition. Point r is added
to the skyline because it has a higher value than the other
skyline point, p, on x

2

; so, they have become incomparable.
In the other direction, we observe the inverse e↵ects, first

the removal of r and then then homogenization of q.
So, whether one adds or removes a dimension, points can

be both added or removed from the skyline. Therefore,
theoretically at least, one cannot anticipate how the sky-
line might change going from one subspace to a neighbour
without using sophisticated preprocessing techniques, such
as those in [11]. So, we will determine the actual frequency
of these e↵ects empirically (Section 4).

A note about Distinct Value Condition

E↵ects H and D create unpredictability when changing sub-
spaces. Thus the motivation for Distinct Value Condition [11],
which ensures monotonicity. In particular, if no value ap-
pears twice in the dataset for the same attribute, then a
point in the skyline for some subspace will always remain in
the skyline after adding any number of other dimensions.

4. EMPIRICAL INVESTIGATION
In the previous section, we investigated what theoreti-

cally happens to the result of a skyline query if one makes
incremental changes to the subspace or constraints. In this
section, we investigate how often each of these e↵ects em-
pirically occur. Our strategy with these experiments is to
execute an initial subspace or constrained query, modify the
query formulation by a variable extent, and measure the
occurrences for each e↵ect defined in Section 3.

4.1 Setup
To observe incremental changes, we conduct one suite of

experiments in which we adjust constraints (Section 4.2.1)
and one in which we add dimensions to a subspace (Sec-
tion 4.2.2). We briefly describe implementation details (Sec-
tion 4.1.1), the datasets that we use (Section 4.1.2), and the
methodology (Section 4.1.3).

4.1.1 Implementation Details
We first apply the contraints/subspace projections onto

the data with a short awk program, and then apply a known
skyline algorithm. When applying constraints, we use the
state-of-the-art skyline algorithm, BSkyTree [6] (implemented
by the original authors). As the BSkyTree algorithm does
not handle duplicate points–which occur quite frequently in
some subspaces–we use our own implementation of BNL [2]
when applying subspace projections.

4.1.2 Datasets
For the experiments with constraints, we primarily use the

standard skyline synthetic data generator [2],2 with parame-
ters we discuss in Section 4.1.3. The synthetic data permits
drawing general conclusions with respect to the specific data
distributions. To also observe behaviour on real data, we
choose the nba3 dataset, a standard benchmark for skyline
research, consisting of statistics for 21961 basketball player-
seasons. We use eight of the statistics, gp, pts, asts, pf, fga,
fgm, fta, and ftm, because others contain frequent NULLs.

The behaviour between subspaces is only interesting with-
out Distinct Value Condition (Section 3.2); so, we again use
the nba dataset, which has duplicate values, but not the
synthetic data, which does not. We add the automobiles
dataset,4 which has 406 points and 8 dimensions (although
we only use the first seven, because origin is non-ordered).

2http://http://pgfoundry.org/projects/randdataset
3http://www.databasebasketball.com
4http://stat-computing.org/dataexpo/1983.html

163

50

100

150

200

250

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Removals
Promotions

(a) Correlated

0

400

800

1200

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Removals
Promotions

(b) Independent

0

2000

4000

6000

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Removals
Promotions

(c) Anti-correlated

Figure 3: Decreasing an upper constraint - UD. (n = 100K, d = 6)

200

400

600

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Additions
Demotions

(a) Correlated

0

500

1000

1500

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Additions
Demotions

(b) Independent

0

2500

5000

7500

10000

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Additions
Demotions

(c) Anti-correlated

Figure 4: Increasing an upper constraint - UI. (n = 100K, d = 6)

We choose this dataset to observe behaviour with many
duplicate maximum values: 27% of the cars have the max.
number (8) of cylinders, 7.5% of the cars have the max.
year (1982), and 4.5% of the cars have the max. displace-
ment (98.0). Non-maximal values are duplicated, too (e.g.,
6 cylinders). All datasets are normalized to the range [0, 1]
to make the interpretation of our plots easier.

4.1.3 Methodology
There are many ways to reformulate a query, so many

variables to consider empirically. We focus on those most
natural for a user to tune and containing polar cases that
demonstrate the range of skyline behaviour.

Studying constraints, we use synthetic data, introducing
more variables but more generalizable findings. We hold the
number of (and ergo density of) points constant at 100K
and dimensionality at 6. As typical in skyline literature,
we vary the distribution (correlated, indepedent, and anti-
correlated), since the skyline size varies with correlation.

We pose a constant initial seed constraint that prunes 75%
of the data (� 0.75 or 0.25). This is a reasonable first con-
straint, equivalent to asking only for restaurants with rat-
ings of at least 4.0 (on a range of 1 to 5). We then compare
the skyline result to that for constraints in 50 increments of
0.0025. We vary the direction of these changes (as per Sec-
tion 3), both increasing and decreasing the constraint. We
place the initial constraint in two di↵erent, extreme loca-
tions: one in the maximal direction (a lower constraint) and
one in the minimal direction (an upper constraint). We do
this for every dimension. In total, this produces 72 combina-
tions on synthetic data, each for which we plot the 50 com-
parisons between the baseline and the modified constraint.

We do the same with the nba dataset to produce 48 combi-
nations (not varying correlation, using all 8 attributes).

For the subspace investigation, there are fewer variables.
As discussed above, we use only real datasets. We iter-
ate each of the (2d

� 2) proper, non-empty subspaces and,
for each, compare the skyline result to that produced after
adding 1 or 2 dimensions. We only add dimensions, because
removal is symmetric. This produces 6050 and 1932 combi-
nations for the nba and automobiles datasets, respectively.

4.2 Discussion
In this section, we describe the salient observations on

skyline behaviour when adjusting constraints (Section 4.2.1)
and adding dimensions to subspaces (Section 4.2.2).

4.2.1 Effects of constraints
We present here our findings on the e↵ects of incremental

constraint changes. We present, first, for upper constraint
changes (UD and UI, in the terminology of Section 3.1), and,
second, for lower constraint changes (LD and LI).

Upper constraints. Figures 3a-3c show the skyline size,
along with the number of removals and promotions for
a representative UD case on synthetic datasets. We do not
show additions nor demotions, since, in agreement with
Section 3.1, there are none.

In all distributions, we see that as the size of change in-
creases, the removals increase steadily and the promo-
tions vary throughout. This is especially apparent for cor-
related data, where about 80% of the original skyline is re-
moved after a 0.065 decrease of the upper constraint and
about 80 promotions occur after a slight change of 0.020.

164

This corresponds to a user, say, decreasing his/her budget
for a restaurant, so the large and variable number of pro-
motions implies he/she will see plenty new options when
filtering out that which is most expensive. We also see the
skyline size has a net decrease; so, as the user would expect,
narrower ranges produce fewer results. Consequently, a UD
change is appropriate for a user who wants to see new points
without substantially changed the baseline constraints.

Figures 4a-4c show the skyline size, additions and de-
motions for the UI case, where a user is, say, increasing
his/her budget. The overall trend is an increasing skyline
size with only slight drops on account of demotions. Again,
the correlated data shows large changes to the skyline even
on very slight changes to constraints: minute changes induce
over 100 demotions, creating an immediate local drop in
skyline size. To an exploratory user most of the original
results will seemingly be no longer valid.

Overall, on upper constraint modifications, we see dra-
matic changes for correlated data because the skyline will
generally be located around the upper boundary of the data
space for all of the correlated dimensions. Thus when one
upper constraint is changed, it is likely to a↵ect every sky-
line point and the change is more immediate than we see for
other distributions. For all distributions, we see that small
changes to constraints can yield significant changes to the
skyline result. Assuming rational users want to predict the
outcome of their input actions, a viable strategy for inter-
actively using the skyline is to only make especially small
changes to upper constraints. If changes are too large, the
skyline may seem unpredictable and uncontrollable.

Lower constraints. We omit plots for the additions caused
by an LD change and for the removals induced by an LI
change for space. In agreement with Section 4.2.1, we only
observe one type of e↵ect for each of these changes and any
additions or removals have a proportionate e↵ect on the
skyline size. The e↵ect grows linearly with the size of the
change in constraints. A user adjusting a lower constraint
is probably trying to filter the results, because it is con-
trary to the direction of his/her preferences. The results
confirm that this is a viable strategy: lowering (raising) the
constraint increases (limits) the output.

100

200

300

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Removals
Promotions

Figure 5: NBA - UD. (n = 21961, d = 8)

Real data. To investigate the e↵ects from constraints on
real data, we conducted the same experiments for the nba
dataset. Figures 5 and 6 show the e↵ects of decreasing the
upper constraint on the fgm attribute and of increasing the
upper constraint on the fta attribute, respectively. As was

50

100

150

200

250

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r o

f p
oi

nt
s

Skyline size
Additions
Demotions

Figure 6: NBA - UI. (n = 21961, d = 8)

1

10

100

1 2 3 4 5 6
Dimensionality of baseline subspace

N
um

be
r o

f s
ky

lin
e

re
m

ov
al

s
Figure 7: Scatterplot of skyline removals compared to di-
mensionality of the baseline subspace - Automobiles

the case with the synthetic data, we see a steady stream of
removals and demotions. What is novel here is that while
most of the skyline has been replaced after only a 0.04 de-
crease of the upper constraint in Figure 5 the skyline neither
increases nor decreases heavily. The same trend is visible in
Figure 6, where the skyline size has minimal variance.

This trend is interesting for an interactive analysis, since
it shows a dataset like nba provides di↵erent skylines of com-
parable sizes, depending on the user’s needs and expressed
conveniently in the constraints. This further supports the
strategy of using UD and UI cases to explore di↵erent sky-
line points in an incremental manner.

Results for the LD and LI cases are omitted due to space
constraints, but confirm the trends shown in the synthetic
experiments, supporting the strategy of using the LD and
LI changes to regulate the skyline size.

4.2.2 Adding dimensions to subspace projections
In these experiments, we add dimensions to baseline sub-

space projections to observe how often the e↵ects analyzed
in Section 3.2 empirically occur. We only add dimensions,
because the behaviour is symmetric (can be interpreted by
reading the plots right-to-left) when removing dimensions.
To a user, Di↵erentiations (and homogenizations) are
counter-intuitive, because they request more (less) data and
then obtain fewer (more) results. So, we investigate under
what circumstances this will impact the exploratory process.

On the nba dataset, we never observe di↵erentiations
for any configuration of experiment parameters. This is an
interesting result because it shows that even in the presence
of many duplicate values, one may not see any di↵eren-
tiations if those duplicates do not occur on the maximum

165

0

50

100

0 30 60 90
Number of skyline removals

N
um

be
r o

f s
ky

lin
e

ad
di

tio
ns

1 dim added
2 dims added
3 dims added

Figure 8: Scatterplot of skyline additions and removals
caused by adding to baseline subspace - Automobiles

values. For the nba dataset, for example, there is seldom a
tie for a record statistic such as most points scored in a single
NBA season. So it is not surprising that competitive players
do not have identical statistics in subspaces. Exploring the
subspaces in this dataset will be quite intuitive.

On the automobiles dataset, we observe di↵entiations.
Figure 7 shows their frequency with respect to the the base-
line subspace dimensionality when one dimension is added.
Even with all dimensions, di↵erentiations occur (points
exist, albeit only 1). Beyond one dimension, all cases in-
clude the cylinders attribute, which has the most duplicated
maximum values. On other attributes, there are no di↵er-
entiations if the baseline has at least two dimensions. This
illustrates that while di↵entiations are rare when the base-
line projection is on several dimensions, they do occur, and
should be illustrated to the user so the results appear stable.

The second plot, Figure 8, shows how common are simul-
taneous additions and di↵erentiation. The simultane-
ity is less desirable for exploring data, because it makes it
harder to contrast subsequent queries. We see that if only
one dimension is added (the triangular points), the e↵ect
can be predominantly additions or predominantly di↵er-
entiations (on the axes), but not both (in the middle).
This is because di↵erentiations pre-suppose a high de-
gree of homogeneity on maximal values, only one of which
needs a high value on the new dimension in order to con-
tinue dominating all the points that are not in the base-
line skyline. As the number of dimensions added goes up,
there is a trend towards more mixed e↵ects, because homo-
geneous points need to continue dominating non-baseline-
skyline points over more new dimensions. By adding 3 di-
mensions, it is quite common to see roughly equal addi-
tions and di↵erentiations; then, the result size has not
changed (and thus is not easier to interpret), but the mix-
ture of points has (which is counter-intuitive).

In summary, di↵erentiations (homogenizations) are
uncommon when adding (removing) one dimension, espe-
cially if starting with several dimensions. They are unlikely
to occur at all if the duplicated values in the dataset are
not on the maximal values. Nevertheless, they occur, even
in high dimensional subspaces, and need to be illustrated to
an exploratory user who would otherwise be confused.

5. CONCLUSION
In this work, we investigated how the skyline performs

as a tool for exploratory data analysis. We analyzed how
the skyline is a↵ected by incremental changes with standard
database operators (projection and selection) by defining the
theoretical e↵ects that one can observe, and measuring the
frequency with which these e↵ects are observed empirically.

A central motivation for the skyline is to disencumber the
user from having to specify query parameters, and this re-
search helps advance that objective. We envision that query
recommendation can benefit from understanding the e↵ects
that incremental changes will have. If the goal is to pro-
duce new results, one can suggest some UD/UI changes or
a dimension to remove. If the goal is to control the out-
put size, UD/UI changes or additional dimensions can be
automatically recommended. Future work can investigate
strategies for producing these recommendations. Learning
the consequences of manipulating query parameters is only
a first step in exploring the expansive possibilities for how
users and skyline-based systems can interact and in guiding
exploration of new data in a principled manner.

6. ACKNOWLEDGEMENTS
This work has been supported in part by the Danish Coun-

cil for Strategic Research, grant 10-092316.

7. REFERENCES
[1] W.-T. Balke, U. Güntzer, and C. Lofi. Eliciting

matters – controlling skyline sizes by incremental
integration of user preferences. In DASFAA, pages
551–562, 2007.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[3] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H.
Tung, and Z. Zhang. On high dimensional skylines. In
EDBT, pages 478–495, 2006.

[4] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. A
safe zone based approach for monitoring moving
skyline queries. In EDBT, pages 275–286, 2013.

[5] J. Lee and S. Hwang. Qskycube: E�cient skycube
computation using point-based space partitioning.
PVLDB, 4(3):185–196, 2010.

[6] J. Lee and S. Hwang. Scalable skyline computation
using a balanced pivot selection technique.
Information Systems, 39:1–21, January 2014.

[7] J. Lee, G.-w. You, S. Hwang, J. Selke, and W.-T.
Balke. Interactive skyline queries. Information
Sciences, 211:18–35, 2012.

[8] M. Magnani, I. Assent, K. Hornbæk, M. R. Jakobsen,
and K. F. Larsen. Skyview: a user evaluation of the
skyline operator. In CIKM, pages 2249–2254, 2013.

[9] M. Magnani, I. Assent, and M. L. Mortensen.
Anytime skyline query processing for interactive
systems. In DBRank, 2012. No. 7.

[10] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
TODS, 30(1):41–82, 2005.

[11] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu,
W. Wang, Y. Tao, J. X. Yu, and Q. Zhang. Towards
multidimensional subspace skyline analysis. TODS,
31(4):1335–1381, 2006.

[12] Y. Tao, X. Xiao, and J. Pei. Subsky: E�cient
computation of skylines in subspaces. In ICDE,
page 65, 2006.

166

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

