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Abstract

A generalized principle of PD faults observer de-
sign for continuous-time linear MIMO systems is
presented in the paper. The problem addressed
is formulated as a descriptor system approach to
PD fault observers design, implying the asymp-
totic convergence both the state observer error as
fault estimate error. Presented in the sense of the
second Lyapunov method, an associated structure
of linear matrix inequalities is outlined to possess
the observer asymptotic dynamic properties. The
proposed design conditions are verified by simu-
lations in the numerical illustrative example.

1 Introduction
As is well known, observer design is a hot research field ow-
ing to its particular importance in observer-based control,
residual fault detection and fault estimation [1], where, es-
pecially from the stand point of the active fault tolerant con-
trol (FTC) structures, the problem of simultaneous state and
fault estimation is very eligible. In that sense various effec-
tive methods have been developed to take into account the
faults effect on control structure reconfiguration and fault
detection [16], [22]. The fault detection filters, usually re-
lying on the use of particular type of state observers, are
mostly used to produce fault residuals in FTC. Because it is
generally not possible in residuals to decouple totally fault
effects from the perturbation influence, different approaches
are used to tackle in part this conflict and to create residuals
that are as a rule zero in the fault free case, maximally sensi-
tive to faults, as well as robust to disturbances [2], [8]. Since
faults are detected usually by setting a threshold on the gen-
erated residual signal, determination of an actual thresh-
old is often formulated in adaptive frames [3]. Generalized
method to solve the problem of actuator faults detection and
isolation in over-actuated systems is given in [14], [15].

To estimate actuator faults for the linear time invariant
systems without external disturbance the principles based
on adaptive observers are frequently used, which make es-
timation of actuator faults by integrating the system output
errors [25]. In particular, proportional-derivative (PD) ob-
servers introduce a design freedom giving an opportunity
for generating state and fault estimates with good sensitivity
properties and improving the observer design performance
[6], [18], [19]. Since derivatives of the system outputs can
be exploited in the fault estimator design to achieve faster

fault estimation, a proportional multi-integral derivative es-
timators are proposed in [7], [24].

Although the state observers for linear and nonlinear
systems received considerable attention, the descriptor de-
sign principles have not been studied extensively for non-
singular systems. Modifying the descriptor observer design
principle [13], the first result giving sufficient design condi-
tions, but for linear time-delay systems, can be found in [5].
Reflecting the same problems concerning the observers for
descriptor systems, linear matrix inequality (LMI) methods
were presented e.g. in [9] but a hint of this method can be
found in [23], [25]. The extension for a class of nonlinear
systems which can be described by Takagi-Sugeno models
is presented in [12].

Adapting the approach to the observer-based fault estima-
tion for descriptor systems as well as its potential extension,
the main issue of this paper is to apply the descriptor prin-
ciple in PD fault observer design. Preferring LMI formula-
tion, the stability condition proofs use standard arguments
in the sense of Lyapunov principle for the design condi-
tions requiring to solve only LMIs without additional con-
straints. This presents a method designing the PD observa-
tion derivative and proportional gain matrices such that the
design is non-singular and ensures that the estimation error
dynamics has asymptotical convergence. From viewpoint
of application, although the descriptor principle is used, it
is not necessary to transform the system parameter into a
descriptor form or to use matrix inversions in design task
formulation. Despite a partly conservative form, the design
conditions can be transformed to LMIs with minimal num-
ber of symmetric LMI variables.

The paper is organized as follows. Placed after Introduc-
tion, Sec. 2 gives a basic description of the PD fault ob-
server and Sec. 3 presents design problem formulation in
the descriptor form for a standard Luenberger observer. A
new LMI structure, describing the PD fault observer design
conditions, is theoretically explained in Sec 4. An example
is provided to demonstrate the proposed approach in Sec. 5
and Sec. 6 draws some conclusions.

Used notations are conventional so that xT , XT de-
note transpose of the vector x and matrix X , respectively,
X = XT > 0 means that X is a symmetric positive defi-
nite matrix, ‖X‖∞ designs the H∞ norm of the matrix X ,
the symbol In represents the n-th order unit matrix, ρ(X)
and rank(X) indicate the eigenvalue spectrum and rank of
a square matrix X , IR denotes the set of real numbers and
IRn, IRn×r refer to the set of all n-dimensional real vectors
and n× r real matrices, respectively.
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2 The Problem Statement
The systems under consideration are linear continuous-time
dynamic systems represented in state-space form as

q̇(t) = Aq(t) +Bu(t) + Ff(t) , (1)

y(t) = Cq(t) , (2)
where q(t) ∈ IRn, u(t) ∈ IRr, y(t) ∈ IRm are the vectors
of the state, input and output variables, f(t) ∈ IRp is the
fault vector, A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n and
F ∈ IRn×p are real finite values matrices, m, r, p < n and

rank
[

A F
C 0

]
= n+ p . (3)

It is considered that the fault f(t) may occur at an uncertain
time, the size of the fault is unknown but bounded and that
the pair (A,C) is observable.

Focusing on fault estimation task for slowly-varying
faults, the fault PD observer is considered in the following
form [19]

q̇e(t) = Aqe(t) +Bu(t) + Ffe(t)+

+J(y(t)− ye(t)) +L(ẏ(t)− ẏe(t)) ,
(4)

ye(t) = Cqe(t) , (5)

ḟe(t) = M(y(t)− ye(t)) +N(ẏ(t)− ẏe(t)) , (6)
where qe(t) ∈ IRn, ye(t) ∈ IRm, fe(t) ∈ IRp are esti-
mates of the system states vector, the output variables vec-
tor and the fault vector, respectively, and J ,L ∈ IRn×m,
M ,N ∈ IRp×m is the set of observer gain matrices is to be
determined.

To explain and concretize the obtained results, the fol-
lowing well known lemma of Schur complement property is
suitable.
Lemma 1. [20] Considering the matrices Q = QT , R =
RT and S of appropriate dimensions, where detR 6= 0,
then the following statements are equivalent
[

Q S
ST −R

]
< 0 ⇔ Q+ SR−1ST < 0, R > 0 (7)

This shows that the above block matrix inequality has a
solution if the implying set of inequalities has a solution.

3 Descriptor Principle in Luenberger
Observer Design

To formulate the proposed PD observer design approach,
the descriptor principle in the observer stability analysis is
presented.

If the fault-free system (1), (2) is considered, the Luen-
berger observer is given as

q̇e(t) = Aqe(t) +Bu(t) + J(y(t)− ye(t)) , (8)

ye(t) = Cqe(t) , (9)
and using (1), (2), (8), (9), it yields

ė(t) = (A− JC)e(t) , (10)

(A− JC)e(t)− ė(t) = 0 , (11)
respectively, where

eq(t) = q(t)− qe(t) . (12)

Using the descriptor principle, the following lemma pre-
sents the Luenberger observer design conditions in terms of
LMIs for the fault-free system (1), (2).

Lemma 2. The Luenberger observer (8), (9) is stable if for
given positive scalar δ ∈ IR there exist a symmetric positive
definite matrix P 1 ∈ IRn×n a regular matrix P 3 ∈ IRn×n

and a matrix Y ∈ IRn×m such that

P 1 = P T
1 > 0 , (13)

[
ATP 3 + P T

3A− Y C −CTY T ∗
P 1 − P 3 + δP T

3A− δY C −δ(P 3 + P T
3 )

]
< 0 .

(14)
When the above conditions hold, the observer gain matrix
J is given as

J = (P T
3 )

−1Y . (15)
Hereafter, ∗ denotes the symmetric item in a symmetric

matrix.

Proof. Denoting the observer system matrix as

Ae = A− JC , (16)

then with the equality

ė(t) = ė(t) (17)

the equivalent form of (11) can be written
[
In 0
0 0

][
ė(t)
ë(t)

]
=

[
ė(t)
0

]
=

[
0 In

Ae −In

][
e(t)
ė(t)

]
,

(18)
or, more generally,

E⋄ė⋄(t) = A⋄
ee

⋄(t) , (19)

where
e⋄T (t) =

[
eT (t) ėT (t)

]
, (20)

E⋄ = E⋄T =

[
In 0
0 0

]
, A⋄

e =

[
0 In

Ae −In

]
. (21)

Defining the Lyapunov function of the form

v(e⋄(t)) = e⋄T (t)E⋄TP ⋄e⋄(t) > 0 , (22)

where
E⋄TP ⋄ = P ⋄TE⋄ ≥ 0 , (23)

then the derivative of (22) becomes

v̇(e⋄(t)) =

= ė⋄T(t)E⋄TP ⋄e⋄(t) + e⋄T(t)P ⋄TE⋄ė⋄(t) < 0
(24)

and, inserting (19) in (24), it yields

v̇(e⋄(t)) = e⋄T (t)(P ⋄TA⋄
e +A⋄T

e P ⋄)e⋄(t) < 0 , (25)

P ⋄TA⋄
e +A⋄T

e P ⋄ < 0 , (26)
respectively. Introducing the matrix

P ⋄ =

[
P 1 P 2

P 3 P 4

]
, (27)

then, with respect to (23), it has to be
[
In 0

0 0

][
P 1 P 2

P 3 P 4

]
=

[
P T

1 P T
3

P T
2 P T

4

][
In 0

0 0

]
≥ 0 ,

(28)
which gives

[
P 1 P 2

0 0

]
=

[
P T

1 0

P T
2 0

]
≥ 0 . (29)
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It is evident that (29) can be satisfied only if

P 1 = P T
1 > 0, P 2 = P T

2 = 0 . (30)

After simple algebraic operations so (26) can be trans-
formed into the following form

[
AT

eP 3 + P T
3Ae ∗

P 1 − P 3 + P T
4Ae −P 4 − P T

4

]
< 0 (31)

and, owing to emerged products P T
3Ae, P T

4Ae in (31), the
restriction on the structure of P 4 can be enunciated as

P 4 = δP 3 , (32)

where δ > 0, δ ∈ IR. Since now

P T
4Ae = δP T

3 (A− JC) , (33)

then, with the notation

Y = P T
3 J , (34)

(31) implies (14). This concludes the proof.

Remark 1. It is naturally to point out that the symmetrical
form of Lemma 2, defined for P 1 = P , P 3 = P T

3 =
Q, is an equivalent inequality to the enhanced Lyapunov
inequality for Luenberger observer design [11].

The above results can be generalized to formulate the de-
scriptor principle in fault PD observer design. The main rea-
son is to eliminate matrix inverse notations from the design
conditions.

4 PD Observer Design
If the observer errors between the system state vector and
the observer state vector as well as between the fault vector
and the vector of its estimate are defined as follows

eq(t) = q(t)− qe(t) , (35)

ef (t) = f(t)− fe(t) , (36)
then, for slowly-varying faults, it is reasonable to consider
[12]

ėf (t) = 0− ḟe(t) = −MCeq(t)−NCėq(t) . (37)

Note, since fe(t) can be obtained as integral of ḟe(t), an
adapting parameter matrix G can be adjust interactively to
set the amplitude of fe(t), i.e., as results it is

fe(t) = G

t∫

0

ḟe(τ)dτ . (38)

To express the time derivative of the system state error eq(t),
the equations (1), (4) together with (2), (5) can be integrated
as

ėq(t) = Aeeq(t) + Fef (t)−LCėq(t) , (39)
where Ae is given in (16) and the PD observer system ma-
trix is

APDe= (In+LC)−1Ae= (In+LC)−1(A−JC) . (40)

Since (37), (39) can be rewritten in the following com-
posed form
[
ėq(t)

ėf (t)

]
=

[
Ae F

−MC 0

][
eq(t)

ef (t)

]
−
[

LC 0

NC 0

][
ėq(t)

ėf (t)

]
,

(41)

by denoting

e◦T (t) =
[
eTq (t) eTf (t)

]
, (42)

A◦ =

[
A F

0 0

]
, J◦ =

[
J

M

]
, L◦ =

[
L

N

]
, (43)

I◦ =

[
In 0

0 Ip

]
, C◦ = [ C 0 ] , (44)

where A◦, I◦ ∈ IR(n+p)×(n+p), J◦,L◦ ∈ IR(n+p)×m,
C◦ ∈ IRm×(n+p), then the equation (41) can be written
as

(I◦ +L◦C◦)ė◦(t) = (A◦ − J◦C◦)e◦(t) , (45)

A◦
ee

◦(t)−D◦
eė

◦(t) = 0 , (46)

respectively, where

A◦
e = A◦ − J◦C◦, D◦

e = I◦ +L◦C◦ . (47)

Introducing the equality

ė◦(t) = ė◦(t) , (48)

in analogy to the equation (18), then (48), (46) can be writ-
ten as
[
I◦ 0

0 0

][
ė◦(t)
ë◦(t)

]
=

[
ė◦(t)
0

]
=

[
0 I◦

A◦
e −D◦

e

] [
e◦(t)
ė◦(t)

]
.

(49)
Thus, by denoting

E•=

[
I◦ 0

0 0

]
, A•

e=

[
0 I◦

A◦
e −D◦

e

]
, e•(t)=

[
e◦(t)
ė◦(t)

]
,

(50)
the obtained descriptor form to PD fault observer is

E•ė•(t) = A•
ee

•(t) , (51)

where A•
e,E

• ∈ IR2(n+p)×2(n+p).
The following solvability theorem is proposed to the de-

sign PD fault observer in the structure proposed in (4)-(6).

Theorem 1. The PD fault observer (4)-(6) is stable if for
given positive scalar δ ∈ IR there exist a symmetric po-
sitive definite matrix P ◦

1 ∈ IR(n+p)×(n+p), a regular matriz
P ◦

3 ∈ IR(n+p)×(n+p) and matrices Y ◦ ∈ IR(n+p)×m, Z◦ ∈
IR(n+p)×m such that

P ◦
1 = P ◦T

1 > 0 , (52)
[
A◦TP ◦

3 + P ◦T
3 A

◦ − Y ◦C◦ −C◦TY ◦T ∗
V ◦

21 V ◦
22

]
< 0 ,

(53)
where

V ◦
21 = P ◦

1 −P ◦
3 + δP ◦T

3 A
◦ − δY ◦C◦ −C◦TZ◦T , (54)

V ◦
22 = −δP ◦

3 − δP ◦T
3 − δZ◦C◦ − δC◦TZ◦T . (55)

If the above conditions hold, the set of observer gain matri-
ces is given by the equations

J◦ = (P ◦T
3 )−1Y ◦, L◦ = (P ◦T

3 )−1Z◦ (56)

and the matrices J , LM , N can be separated with respect
to (43).
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Proof. Defining the Lyapunov function of the form

v(e•(t)) = e•T (t)E•TP •e•(t) > 0 , (57)

where
E•TP • = P •TE• ≥ 0 , (58)

then, using the property (58), the time derivative of (57)
along the trajectory of (51) becomes

v̇(e•(t)) =

= ė•T(t)E•TP •e•(t) + e•T(t)P •TE•ė•(t) < 0 .
(59)

Thus, substituting (51) into (59), it yields

v̇(e•(t)) = e•T (t)(P •TA•
e +A•T

e P •)e•(t) < 0 , (60)

which implies

P •TA•
e +A•T

e P • < 0 . (61)

Defining the Lyapunov matrix

P • =

[
P ◦

1 P ◦
2

P ◦
3 P ◦

4

]
, (62)

in analogy with (29) then (58) implies

P ◦
1 = P ◦T

1 > 0, P ◦
2 = P ◦T

2 = 0 (63)

and, using (50) and (62), (63) in (61), it yields
[
0 A◦T

e

I◦ −D◦T
e

][
P ◦

1 0

P ◦
3 P ◦

4

]
+

[
P ◦

1 P ◦T
3

0 P ◦T
4

][
0 I◦

A◦
e −D◦

e

]
< 0 .

(64)
After some algebraic manipulations, (64) takes the follow-
ing form [

U•
1 U•T

2

U•
2 U•

3

]
< 0 , (65)

where, with the notation (47),

U•
1 = (A◦ − J◦C◦)TP ◦

3 + P ◦T
3 (A◦ − J◦C◦) , (66)

U•
2 = P ◦T

4 (A◦−J◦C◦)+P ◦
1−P ◦

3−C◦TL◦TP ◦
3 , (67)

U•
3 = −P ◦

4 − P ◦T
4 − P ◦T

4 L◦C◦ −C◦TL◦TP ◦
4 . (68)

By setting

P ◦
4 = δP ◦

3, Y ◦ = P ◦T
3 J◦, Z◦ = P ◦T

3 L◦, (69)

where δ > 0, δ ∈ IR, then (65)-(68) imply (53)-(55).
Writing (68) as follows

U•
3 =

=−P ◦T
4 (I◦+L◦C◦)− (I◦+L◦C◦)TP ◦

4 = −R• (70)

and comparing (7) and (65), then, if the inequalities (52)-
(53) are satisfied, the Schur complement property (7) ap-
plied to (65) implies that R• is positive definite.

Since P ◦
4 is regular, (I◦+L◦C◦) is also regular and so

APDe given by (40) exists. This concludes the proof.

Since there is no restriction on the structure of P 3 in The-
orem 1, it follows that the problem of checking the existence
of a stable system matrix of PD adaptive fault observer in a
given matrix space may also be formulated with symmet-
ric matrices P 3 and P 3. This limit case of the LMI struc-
ture design condition, bound to a single symmetric matrix,
is given by the following theorem.

Theorem 2. The PD observer (4)-(6) is stable if for given
positive scalar δ ∈ IR there exist a symmetric positive
definite matrix Q◦ ∈ IR(n+p)×(n+p) and matrices Y ◦ ∈
IR(n+p)×m, Z◦ ∈ IR(n+p)×m such that

Q◦ = Q◦T > 0 , (71)
[
A◦TQ◦ +Q◦A◦ − Y ◦C◦ −C◦TY ◦T ∗

W ◦
21 W ◦

22

]
< 0 ,

(72)
where

W ◦
21 = δQ◦A◦ − δY ◦C◦ −C◦TZ◦T , (73)

W ◦
22 = −2δQ◦ − δZ◦C◦ − δC◦TZ◦T . (74)

If the above conditions are affirmative, the extended ob-
server gain matrices are given by the equations

J◦ = (Q◦)−1Y ◦, L◦ = (Q◦)−1Z◦. (75)

Proof. Since there is no restriction on the structure of P 3 it
can be set

P ◦
1 = P ◦

3 = P ◦T
3 = Q◦ > 0 (76)

and the conditioned structure of P ◦
4, with respect to P ◦

3 and
A◦

e , can be taken into account as

P ◦
4 = δP ◦

3 = δQ◦, (77)

where δ > 0, δ ∈ IR. If these conditions are incorporated
into (66)-(68), then

P T
3A

◦
e = Q◦(A◦ − J◦C◦) = Q◦A◦ − Y ◦C◦ , (78)

P ◦T
4 L◦C◦ = δP ◦T

3 L◦C◦ = δQ◦L◦C◦ = δZ◦C◦ , (79)
where

Y ◦ = Q◦J◦, Z◦ = Q◦L◦. (80)
Thus, with these modifications, (65)-(68) imply (72)-(74).
This concludes the proof.

Note, the design conditions formulated in Theorem 2 give
potentially more conservative solutions.

5 Illustrative Example
The considered system is represented by the model (1), (2)
with the model parameters [10]

A =




1.380 −0.208 6.715 −5.676
−0.581 −4.290 0.000 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104




B =




0.000 0.000
5.679 0.000
1.136 −3.146
1.136 0.000


 , C =

[
4 0 1 0
0 0 0 1

]

To consider single actuator faults it was set E = B, and
the matrix variables Q◦, Y ◦, Z◦ satisfying (71)-(74) for
δ = 0.75 were as follows

Q◦ = [ Q◦
1 Q◦

2 ] ,

Q◦
1 =




0.1737 0.0012 0.1409
0.0012 0.1615 0.0195
0.1409 0.0195 0.1794

−0.1316 0.0252 −0.1439
−0.0118 −0.1975 −0.0464
0.1461 −0.0026 0.1557



,
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Q◦
2 =




−0.1316 −0.0118 0.1461
0.0252 −0.1975 −0.0026

−0.1439 −0.0464 0.1557
0.2177 −0.1136 −0.1255

−0.1136 1.4490 −0.1904
−0.1255 −0.1904 1.3479



,

Y ◦ =




0.1162 −0.0220
−0.0094 0.1404
0.0814 0.1439

−0.0719 0.1072
0.0060 0.0171
0.0003 0.2159



,

Z◦ =




−0.0164 −0.0445
0.0013 −0.0528

−0.0728 0.1181
0.0678 0.0229
0.0015 0.1434

−0.1062 0.1758



,

where the SeDuMi package [17] was used to solve given set
of LMIs.

The PD observer extended matrix gains are then com-
puted using (56) as

J◦ =




0.8777 −1.5720
−0.0801 0.5621
−0.0624 3.7385
0.1229 2.2486

−0.0021 0.3934
−0.0767 0.1649



,

L◦ =




0.7391 −2.0549
0.0663 −0.6605

−0.7915 3.4010
0.1994 1.3731

−0.0000 0.2244
−0.0488 0.1187



.

Verifying the PD observer system matrix eigenvalue spec-
trum, the results were

ρ(Ae) = { −0.7731,−2.8914,−4.7816,−8.9188 } ,

ρ(APDe) = { −1.1194,−1.6912,−1.9969,−2.9765 } .

That means the PD observer is stable as well as its "P" part
is stable, too. Moreover, also the descriptor form (45) of the
PD observer is stable, where

ρ
(
(I◦ +L◦C◦)−1(A◦ − J◦C◦)

)
=

=

{
−1.7763, −2.0966,

−0.6629± 0.7872 i, −1.3632± 0.4931 i

}
.

Comparing with a solution of (52)-(55) for the δ = 0.95, it
is possible to verify that in this case

ρ(Ae) = { −6.8230,−10.3876,−81.5789,−472.0230 } ,

ρ(APDe) = { −0.9562,−0.9774,−7.2561,−9.8300 } ,

ρ
(
(I◦ +L◦C◦)−1(A◦ − J◦C◦)

)
=

=

{
−1.0240,−1.0748, −6.4810,−9.1501

−0.9650± 0.0068 i

}
,

which implies in this case a faster dynamics of the descriptor
form of the PD observer but a slower for the PD observer.
Note, the exploitation of δ = 0.75 leads in this case to un-
stable "P" part of the PD observer.
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Figure 1: Adaptive fault estimator responses

Although many actuator faults can cause the gain to drift,
in practice the faults lead to an abrupt change in gain [21].
To simulate this phenomena, it was assumed that the fault in
actuators for (1) was given by

f(t) =





0, t ≤ tsa ,
fh

tsb−tsa
(t− tsa), tsa < tsb ,
fh, tsb ≤ tca ,

− fh
tcb−tca

(t− tcb), tca < tcb ,
0, t ≥ tcb ,

where, analyzing the single first actuator fault estimation, it
was set

fh = 2, tsa = 30s, tsb = 35s, tea = 65s, teb = 70s ,

and for the single second actuator fault these parameters
were

fh = 2, tsa = 100s, tsb = 105s, tea = 135s, teb = 140s .

It is demonstrates that for equal fh in the first and the sec-
ond actuator faults it is possible for given B to adjust the
common adapting parameter matrix G in (38) as follows

G =

[
40.0 5.9
5.9 22.0

]
.

The obtained results are illustrated in Fig. 1 where, just in
terms of rendering, all faults responses and their estimates
were combined into a single image, and so the demonstra-
tion can not be seen as a progressive sequence of single
faults in the actuators system. This figure presents the fault
signals, as well as their estimations, reflecting the single first
actuator fault starting at the time instant t = 30s and ap-
plied for 40s and then the fault of the second actuator is
demonstrated beginning in the time instant t = 100s and
lasts for 40s. The presented simulation was carried out in
the system autonomous mode, practically the same results
were obtained for forced regime of the system.

The adapting parameter G and the tuning parameter δ
were set interactively considering the maximal value of fault
signal amplitude fh and the fault observer dynamics. It can
be seen that the exists very small differences between the
signals reflecting single actuator faults and the observer ap-
proximate ones for slowly warring piecewise constant actu-
ator faults. The principle can be used directly in the control
structures with the fault compensation [4], but can not be
directly used to localize actuator faults [14].

Proceedings of the 26th International Workshop on Principles of Diagnosis

239



6 Concluding Remarks
Based on the descriptor system approach a new PD fault
observer design method for continuous-time linear systems
and slowly-varying actuator faults is introduced in the paper.
Presented version is derived in terms of optimization over
LMI constraints using standard LMI numerical procedures
to manipulate the fault observer stability and fault estima-
tion dynamics. Presented in the sense of the second Lya-
punov method expressed through LMI formulation, design
conditions guaranty the asymptotic convergence of the state
as well as fault estimation errors. The numerical simulation
results show good estimation performances.
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