
Abstract 

This paper deals with sensor and process fault de-
tection, isolation (FDI) and identification of an in-
tensified heat-exchanger/reactor. Extended high 
gain observers are adopted for identifying sensor 
faults and guaranteeing accurate dynamics since 
they can simultaneously estimate both states and 
uncertain parameters. Uncertain parameters in-
volve overall heat transfer coefficient in this paper. 
Meanwhile, in the proposed algorithm, an ex-
tended high gain observer is fed by only one meas-
urement. In this way, observers are allowed to act 
as soft sensors to yield healthy virtual measures for 
faulty physical sensors. Then, healthy measure-
ments, together with a bank of parameter interval 
filters are processed, aimed at isolating process 
faults and identifying faulty values. Effectiveness 
of the proposed approach is demonstrated on an in-
tensified heat-exchanger/ reactor developed by the 
Laboratoire de Génie Chimique, Toulouse, France. 

1 Introduction 

Nowadays, safety is a priority in the design and develop-
ment of chemical processes. Large research efforts contrib-
uted to the improvement of new safety tools and methodol-
ogy. Process intensification can be considered as an inher-
ently safer design such as intensified heat exchangers 
(HEX) reactors in [1], the prospects are a drastic reduction 
of unit size and solvent consumption while safety is in-
creased due to their remarkable heat transfer capabilities.  
However, risk assessment presented in [2] shows that po-
tential risk of thermal runaway exists in such intensified 
process. Further, several kinds of failures may compromise 
safety and productivity: actuator failures (e.g., pump fail-
ures, valves failures), process failures (e.g., abrupt varia-
tions of some process parameters) and sensor failures. 
Therefore, supervision like FDI is required prior to the im-
plementation of an intensified process. 
For complex systems (e.g. heat-exchanger/reactors), fault 
detection and isolation are more complicated for the reason 
that some sensors cannot be placed in a desirable place, and 
for some variables (concentrations), no sensor exists. In ad-
dition, complete state and parameters measurements (i.e. 
overall heat transfer coefficient) are usually not available. 

Supervision studies in chemical reactors have been reported 
in the literature concerning process monitoring, fouling de-
tection, fault detection and isolation. Existing approaches 
can be roughly divided into data based method as in [3], 
neural networks as in [4] and model based method as in 
[5,6,7,8,9]. Among the model based approach, observer 
based methods are said to be the most capable 
[10,11,12,13,14] if analytical models are available. 
Most of previous approaches focus on a particular class of 
failures. This paper deals with integrated fault diagnosis for 
both sensor and process failures. Using temperature meas-
urements, together with state observers, an integrated diag-
nosis scheme is proposed to detect, isolate and identify 
faults. As for sensor faults, a FDI framework is proposed 
based on the extended observer developed in [15]. Extended 
high gain observers are adopted in this paper due to its ca-
pability of simultaneous estimation of both states and pa-
rameters, resulting in more accurate system dynamics. The 
estimates information provided by the observers and the 
sensors measurements are processed so as to recognize the 
faulty physical sensors, thus achieving sensor FDI. Moreo-
ver, the extended high gain observers will work as soft sen-
sors to output healthy virtual measurements once there are 
sensor faults occurred. Then, the healthy measures are uti-
lized to feed a bank of parameter intervals filters developed 
in [11] to generate a bank of residuals. These residuals are 
processed for isolating and identifying process faults which 
involves jumps in overall heat transfer coefficient in this 
work. 
It should be pointed out that the contribution of this work 
does not lie with the soft sensor design or the parameter in-
terval filter design as either part has individually already 
been addressed in the existing literature. However, the au-
thors are not aware of any studies where both tasks are com-
bined for integrated FDI, besides, there is no report whereby 
parameter estimation capacity of the extended high gain ob-
server is used to adapt the coefficient, rather than parameter 
FDI, thus together with sensor FDI framework forms the 
contribution of this work. 

2 System modelling 

2.1 Process description  

The key feature of the studied intensified continuous heat-
exchanger/reactor is an integrated plate heat-exchanger 

Faults isolation and identification of Heat-exchanger/ Reactor                                  

with parameter uncertainties 

Mei ZHANG1,4,5 ,  Boutaïeb DAHHOU2,3 Michel CABASSUD 4,5 Ze-tao LI1 

1Guizhou University 
gzgylzt@163.com  

2CNRS LAAS, Toulouse, France  
boutaib.dahhou@laas.fr  

3Université  de Toulouse, UPS, LAAS, Toulouse, France  
4 Université de Toulouse, UPS, Laboratoire de Génie Chimique  

michel.cabassud@ensiacet.fr  

5 CNRS, Laboratoire de Génie Chimique  
 
 
 

Proceedings of the 26th International Workshop on Principles of Diagnosis

253



technology which allows for the thermal integration of sev-
eral functions in a single device. Indeed, by combining a re-
actor and a heat exchanger in only one unit, the heat gener-
ated (or absorbed) by the reaction is removed (or supplied) 
much more rapidly than in a classical batch reactor. As a 
consequence, heat exchanger/reactors may offer better 
safety (by a better thermal control of the reaction), better 
selectivity (by a more controlled operating temperature).  

2.2 Dynamic model 

Supervision like FDI study can be much more efficient if a 
dynamic model of the system under consideration is availa-
ble to evaluate the consequences of variables deviations and 
the efficiency of the proposed FDI scheme. 
Generally speaking, intensified continuous heat-exchanger/ 

reactor is treated as similar to a continuous reactor [16,17], 

then flow modelling is therefore based on the same hypoth-

esis as the one used for the modelling of real continuous re-

actors, represented by a series of N perfectly stirred tank re-

actors (cells). According to [18] , the number of cells N 

should be greater than the number of heat transfer units, and 

the heat transfer units is related with heat capacity flowrate.  

The modelling of a cell is based on the expression of bal-

ances (mass and energy) which describes the evolution of 

the characteristic values: temperature, mass, composition, 

pressure, etc. Given the specific geometry of the heat-ex-

changer/reactor, two main parts are distinguished. The first 

part is associated with the reaction and the second part en-

compasses heat transfer aspect. Without reaction, the basic 

mass balance expression for a cell is written as: 

{Rate of mass flow in – Rate of mass flow out = Rate of 

change of mass within system} 

The state and evolutions of the homogeneous medium cir-
culating inside cell 𝑘 are described by the following bal-
ance: 

2.2.1 Heat balance of the process fluid (J. s−1) 

ρp
kVp

kCpp

k dTp
k

dt
= hp

kAk(Tp
k − Tu

k) + ρp
kFp

kCpp

k(Tp
k−1 − Tp

k)  (1)  

where ρp
k  is density of the process fluid in cell k (in 

kg. m−3), Vp
k is volume of the process fluid in cell k (in m3), 

Cpp

kspecific heat of the process fluid in cell k (in 
J. kg−1. K−1) , hp

k    is the overall heat transfer coefficient (in 
J. m−2. K−1. s−1). 

2.2.2 Heat balance of the utility fluid (J. s−1) 

ρu
kVu

kCpu

k dTu
k

dt
= hu

kAk(Tu
k − Th

k) + ρu
kFu

kCpu

k(Tu
k−1 − Tu

k)      (2) 

whereρu
k is density of the utility fluid in cell k (in kg. m−3), 

Vu
k is volume of the utility fluid in cell k (in m3), Cpu

kspecific 

heat of the utility  fluid in cell k (in J. kg−1. K−1) , hu
k   is 

overall heat transfer coefficient (in J. m−2. K−1. s−1). 
The eq. (1) (2) represent the dynamic reactor comportment. 
The two equations represent the evolution of two states (Tp: 
reactor temperature and Tu: utility fluid temperature).The 
heat transfer coefficient (h) is considered as a variable 
which undergoes either an abrupt jumps (by an expected 
fault in the process) or a gradual variation (essentially due 
to degradation). The degradation can be attributed to foul-
ing. Fouling in intensified process is tiny due to the micro 

channel volume and cannot be a failure leads to fatal acci-
dent normally, but it may influence the dynamic of the pro-
cess and it is rather difficult to calculate the changes online. 
In this paper, we treat the parameter uncertainty as an un-
measured state, and employ an observer as soft sensor to 
estimate it, unlike other literature, the estimation here is not 
for fouling detection but for more accurate model dynamics, 
and to ensure the value of the variable is within acceptable 
parameter, (e.g., upper and lower bounds of the process var-
iable value). 
To rewrite the whole model in the form of state equations, 
due to the assumption that every element behaves like a per-
fectly stirred tank, we suppose that one cell can keep the 
main feature of the qualitative behavior of the reactor. For 
the sake of simplicity, only one cell has been considered. 
Let us delete the subscript k for a given cell. 

Define the state vector as x1
T = [x11, x12]T = [Tp, Tu]T, un-

measured state x2
T = [x21, x22]T = [hu, hp]T ,    

dhp

dt
=

dhu

dt
= ε(t) , ε(t) is an unknown but bounded function refers 

to variation of h, the control input u = Tui, the output vector 

of measurable variables yT = [y1, y2]T = [Tp, Tu]
T
, then 

the equation (1) and (2) can be rewritten in the following 

state-space form: 

                   {

ẋ1 = F1(x1)x2 + g1(x1, u)

ẋ2 = ε(t)                              
y = x1                                                  

    (3) 

 

  

Where, F1(x1) = (

A

ρpCpp
Vp

(Tp − Tu) 0

0
A

ρuCpu
Vu

(Tu − Tp)
),  

and g1(x) = (

(Tpi−Tp)Fp

Vp

(Tui−Tu)Fu

Vu

) , Tpi, Tui is the output of previ-

ous cell, for the first cell, it is the inlet temperature of pro-

cess fluid and utility fluid. 

In this case, the full state of the studied system is given as: 

 

                     {
ẋ = F(x1)x + G(x1, u) +  ε̅(t)
y = Cx                                          

       (4) 

 

Where x = [
x1

x2
] , F(x1) = (

0 F1(x1)
0 0

) , G(x1, u) =

(
g1(x, u)

0
) , C = (I 0), ε̅(t) = (

0
ε(t)

) 

3 Fault detection and diagnose scheme 

3.1 Observer design for sensor FDI 

The extended high gain observer proposed by [15] can be 
used like an adaptive observer for estimation both states and 
parameters simultaneously, in this paper, the latter capabil-
ity is utilized to estimate incipient degradation of overall 
heat transfer coefficient (due to fouling), thus guaranteeing 
a more accurate approximation of the temperature. It is quite 
useful in chemical processes since parameters are usually 
with uncertainties and unable to be measured. 
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Consider a nonlinear system as the form: 
 

{
ẋ = F(x1)x + G(x1, u)
y = Cx                             

      (5) 

where x = (x1, x2)T ∈ ℛ2n, x1 ∈ ℛn is the state, x2 ∈ ℛn 

is the unmeasured state, x2 = ϵ(t), u ∈ ℛm, y ∈ ℛp are in-

put and output, ϵ(t) is an unknown bounded function 

which may depend on u(t), y(t), noise, etc., and  
  

 F(x1) = (
0 F1(x1)
0 0

) , G(x1, u) = (
g1(x, u)

0
), C(I 0),   

 

 F1(x1) is a nonlinear vector function, g1(x, u) is a matrix 

function whose elements are nonlinear functions. 

Supposed that assumptions related boundedness of the 

states, signals, functions etc. in [15] are satisfied, the ex-

tended high gain observer for the system can be given by:   

     

{
ẋ̂ = F(x̂1)x + G(x̂1, u) − Λ−1(x̂1)Sθ

−1CT(ŷ − y)

ŷ = Cx̂                                                                            
      (6)   

   

Where:    Λ(�̂�1) = [
𝐼 0
0 𝐹1(�̂�1)

]                                      
 

𝑆𝜃  is the unique symmetric positive definite matrix satisfy-

ing the following algebraic Lyapunov equation: 
 

                 θSθ  + ATSθ  + Sθ A − CTC = 0              (7) 
 

Where A = [
0 I
0 0

] , θ > 0 is a parameter define by [15] 

and the solution of eq. (7) is: 
 

                      Sθ = [

1

θ
I −

1

θ2 I

−
1

θ2 I
2

θ3 I
]                          (8)                

 

Then, the gain of estimator can be given by: 
 

        H = Λ−1(x̂1)Sθ
−1CT =  Λ(x̂1) [

2θI
θ2F1

−1(x̂1)
]      (9) 

 

Notice that larger 𝜃 ensures small estimation error.  How-
ever, very large values of 𝜃 are to be avoided in practice due 
to noise sensitiveness. Thus, the choice of 𝜃 is a compro-
mise between fast convergence and sensitivity to noise. 

3.2 Sensor fault detection and isolation scheme 
 

The above observer could guarantee the heat-exchanger/re-
actor dynamics ideally. Then, a bank of the proposed ob-
servers, together with sensor measurements, are used to 
generate robust residuals for recognizing faulty sensor. 
Thus, we propose a FDI scheme to detect, meanwhile, iso-
late and recovery the sensor fault. 
 

3.2.1 Sensor faulty model 
 

A sensor fault can be modeled as an unknown additive term 
in the output equation. Supposed θsj is the actual measured 
output from jth sensor, if jth sensor is healthy, θsj=yj , while 
if jth sensor is faulty, θsj = yj

f = yj + fsj,   (𝑓𝑠𝑗  is the fault), 
for t ≥ tf and lim

t→∞
|yj − θsj| ≠ 0.That means yj

f is the actual 
output of the jth sensor when it is faulty, while yj is the ex-
pected output when it is healthy, that is: 
 

θsi = {
yi;                       jth sensor when it is faulty

yi
f = yi + fsi; jth sensor when it is faulty

  (10) 

 

With this formulation, the faulty model becomes: 
 

{
ẋ = F(x1)x + G(x1, u) + ε̅(t)

y = Cx + Fsfs                            
               (11) 

 

𝐹𝑠  is the fault distribution matrix and we consider that fault 
vector 𝑓𝑠 ∈ ℛ𝑝 (𝑓𝑠𝑗is the 𝑗𝑡ℎ element of the vector) is also a 
bounded signal. Notice that, a faulty sensor may lead to in-
correct estimation of parameter. That is why we emphasized 
healthy measurement for parameter fault isolation as men-
tioned above. 
 

3.2.2 Fault detection and isolation scheme 
 

The proposed sensor FDI framework is based on a bank of 

observers, the number of observers is equal to the number 

of sensors. Each observer use only one sensor output to es-

timate all the states and parameters. First, assumed the sen-

sor used by ith observer is healthy, let  yi denotes the ith 

system output used by the ith observer. Then we form the 

observer as: 
 

1 ≤ i ≤ p {
ẋ̂i = F(x̂1

i )x + G(x̂1
i , u) + Hi(yi − ŷi

i)

ŷi = Cx̂i                                                       
     (12) 

 

Define  ex
i = x̂i − x, ey

i = Cex
i , eyj

i = ŷj
i − yj, rj

i(t) = ‖ŷj
i −

yj‖,   μi = ‖rj
i(t)‖ ≔ sup‖rj

i(t)‖, for  t ≥ 0. 

Where i denotes the ith observer,  ŷi
i, ŷj

idenotes the ith, jth 

estimated system output generated by the ith observer, Hi is 

the gain of ith observer determined by the following equa-

tion :   

Hi = Λ−1(x̂1)Sθi

−1CT = Λ(x̂1) [
2θiI

θi
2F1

−1(x̂1)
] 

Then we get: 

Theorem 1: 

If the lth  sensor is faulty, then for system of form (4), the 

observer (12) has the following properties: 

For  i ≠ l , ŷi = y asymptotically 

For  i = l,  ŷi ≠ y 

Proof: If the lth  sensor is faulty, then: 

For  i ≠ l, means that  fsi = 0, yi = θsi , we have: 
 

lim
t→∞

ex
i = lim

t→∞
(x̂i − x) = 0  (13) 

 

Then the vector of the estimated output ŷi generated by ith 

observer guarantee ŷi = y after a finite time. 

For i = l, means that θsl = yl
f = yl + fsl, fsl ≠ 0 , the ob-

server is designed on the assumption that there is no fault 

occurs, because there is fault  fsl exit, so the estimation error 

  ex
l = 0 asymptotically cannot be satisfied, then : 

 

lim
t→∞

(x̂i − x) = lim
t→∞

(x̂l − x) ≠ 0        (14) 

we have: 

                  ėx
l = F(x̂1

i , u)  ex
l − HiG(x̂1

i , u, fsl)  ex
l          (15) 

 

Then the vector of the estimated output ŷi generated by the 

ith observer is different from y, that is ŷi ≠ y.⊡ 

As mentioned above, the observers are deigned under the 

assumption that no fault occurs, furthermore, each observer 

just subject to one sensor output. Residual ri
i is the differ-

ence between the ith output estimation ŷi
i determined by 

the ith observer and the ith system output yi, then Theorem 

2 formulates the fault detection and isolation scheme. 
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Theorem 2:  

If the lth  sensor is faulty, then: 

For  i ≠ l, we have: 

fsi = 0, yi = θsi   (16) 

thus ŷi
i converges to  yi asymptotically, we get:       

ri
i = ‖ŷi

i − yi‖ ≤ μi  (17) 

For i = l, we have: 

 fsl ≠ 0, θsl = yl
f = yl + fsl ≠ yl, then ŷl

l could not track yl 

correctly: 

rl
l = ‖ŷl

l − yl‖ ≥ μl      (18) 
 

Therefore, in practice, we can check all the residuals  ri
i, for 

1 ≤ i ≤ p, if  ri
i ≥ μi  denotes that ith sensor is faulty, then 

the sensor fault detection and isolation is achieved. 

The residuals are designed to be sensitive to a fault that 

comes from a specific sensor and as insensitive as possible 

to all the others sensor faults. This residual will permit us to 

treat not only with single faults but also with multiple and 

simultaneous faults. 

Let rsi denotes the fault signature of the ith sensor, define: 
 

    rsi(t) = {
1  if ri

i ≥ μi; ith sensor is faulty

0  if ri
i ≤ μi; ith sensor is health

    (19) 

 

3.2.3 Fault identification and handling mechanism 
 

1) Fault identification 
 

Supposed there are m healthy sensors and  p − m faulty 

ones, then to identify the faulty size of ith sensor, use m 

estimated output ŷi
m  generated by m observers which use 

healthy measures, 1 ≤ m ≤ p − 1, m ≠ i , define f̂si as the 

estimated faulty value of the ith sensor, then: 
 

f̂si =
1

m
∑ |ŷi

m − θsi|
m
i=1

∆
→ fsi  (20)  

2) Fault recovery 

As mentioned above, the extended high gain observer is 

also worked as a software sensor to provide an adequate 

estimation of the process output, thus replacing the meas-

urement given by faulty physical sensor. 

θsi is the actual measured output from ith sensor: 

θsi = {
yi

yi
f = yi + fsi

  (21) 

Let m observers use healthy measurements as the soft sen-

sor for ith sensor, define: 

y̅i =
1

m
∑ ŷi

m     (22)

m

i=1

 

If ith sensor is healthy, let the sensor actual output as θsi 

its output, while if it is faulty, let y̅i to replace  θsi , that is:  
 

yi = {
θsi , if ith sensor healthy

y̅i, if ith sensor faulty
   (23) 

3.3 process fault diagnose 

In order to achieve process FDD, healthy measurements are 

fed to a bank of parameter intervals filters developed in [11] 

to generate a bank of residuals. These residuals are pro-

cessed for identifying parameter changes, which involves 

variation of overall heat transfer coefficient in this paper. 

The main idea of the method is as follows. 

The practical domain of the value of each system parameter 

is divided into a certain number of intervals. After verifying 

all the intervals whether or not one of them contains the 

faulty parameter value of the system, the faulty parameter 

value is found, the fault is therefore isolated and estimated. 

The practical domain of each parameter is partitioned into a 

certain number of intervals. For example, parameter hp is 

partitioned into q intervals, their bounds are denoted 

by  hp
(0)

, hp
(1)

, … , hp
(i), … , hp

(q)
 . The bounds of ith interval are 

hp
(i−1)

and  hp
(i)

 , are also noted as hp
bi and hp

ai, and the nomi-

nal value for hp denotes by hp0 . 

To verify if an interval contains the faulty parameter value 

of the post-fault system, a parameter filter is built for this 

interval. A parameter filter consists of two isolation observ-

ers which correspond to two interval bounds, and each iso-

lation observer serves two neighboring intervals. An inter-

val which contains a parameter nominal value is unable to 

contain the faulty parameter value, so a parameter filter will 

not be built for it.  

Define Eq. (3) into a simple form as: 
 

 {
ẋ1 = F1(x1)x2 + g1(x1, u)
 y = x1                                    

=  {
ẋ1 = f(x1, hp, u)
y = x1                 

   (24) 

 

The parameter filter for ith interval of hp is given below. 

The isolation observers are: 
 

{

ẋ̂ai = f(x̂1, hp0
ai , u) + H(y − ŷai)

ẏ̂ai = cẋ̂ai                                        

εai = y − cẋ̂ai                                

       (25) 

 

            {

ẋ̂bi = f(x̂1,  hp0
bi , u) + H(y − ŷbi)

ẏ̂bi = cẋ̂bi                                         

εbi = y − hẋ̂bi                                 

(26) 

Where: 

hp0
ai (t) = {

 hp0,    t < tf

hp
(i)

, t ≥ tf

  , hp0
bi (t) = {

 hp0,    t < tf

hp
(i−1)

, t ≥ tf

   ,(27) 

 

The isolation index of this parameter filter is calculated by: 
 

            νi(t) = sgn(εai)sgn(εbi)             (28) 

As soon as  νi(t) = 1, the parameter filter sends the ’non-

containing’ signal to indicate that this interval does not con-

tain the faulty parameter value. And if the fault is in the ith 

interval. Let: 

ĥA =
1

2
(haiA + hbiA)       (29) 

 to represent the faulty value, fault isolation and identifica-

tion is then achieved. 

4 Numerical simulation  

A case study is developed to test the effectiveness of the 

proposed scheme. The real data is from a laboratory pilot of 

a continuous intensified heat-exchanger/reactor. The pilot is 

made of three process plates sandwiched between five util-

ity plates, shown in Fig.1. More Relative information could 

be found  in [2]. As previously said, the simulation model is 

considered just for one cell which may lead to moderate in-

accuracy of the dynamic behavior of the realistic reactor. 

However, this point may not affect the application and 

demonstration of the proposed FDD algorithm encouraging 

results are got.  
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Figure 1 (a) Reactive channel design; (b) utility channel de-

sign; (c) the heat exchanger/reactor after assembly. 

The constants and physical data used in the pilot are given 

in table1. 

Table 1.  Physical data used in the pilot 

Constant Value units 

hA 214.8 W. K−1 

A 4e−6 m3 

Vp 2.685e−5 m3 

Vu 1.141e−4 m3 

ρp, ρu 1000 kg. m−3 

cpp
, cpu

 4180 J. kg−1. k−1 

4.1 operation conditions  

The inlet fluid flow rate in utility fluid and process fluid are   

𝐹𝑢 = 4.17𝑒−6𝑚3, 𝐹𝑝 = 4.22𝑒−5𝑚3𝑠−1.The inlet tempera-

ture in utility fluid is time-varying between 15.6℃ and 

12.6℃, which is a classical disturbance in the studied sys-

tem, as shown in Fig.2. The inlet temperature in process 

fluid is 76℃. Initial condition for all observers and models 

are supposed to be T̂𝑝
0 = T̂𝑢

0 = 30℃, hA = 214.8 W. K−1 .   

                

                Fig.2 utility inlet temperature  𝑇𝑢𝑖 

4.2 High gain observer performance 

To prove the convergence of the observers and show their 

tracking capabilities, suppose the heat transfer coefficient 

subjects to a decreasing of ℎ = (1 − 0.01𝑡)ℎ and followes 

by a sudden jumps of 15 at 𝑡 = 100𝑠. These variations and 

observer estimation results are reported in Fig.3. 

 

 

 

Fig.3. simulation and estimation of heat transfer coefficient 

variation. 

Black curve simulates the actual changes of the parameter 

while the red one illustrates the estimation generated by the 

proposed observer, it can be seen from Fig. 3 that the esti-

mation value tracks behavior of the real value with a good 

accuracy, thus ensuring a good dynamics. 

4.3 Sensor FDI and recovery demonstration   

In order to show effectiveness of the proposed method on 
sensor FDI, multi faults and simultaneous faults in the tem-
perature sensors are considered in case 1 and case 2 respec-
tively. Besides, the pilot is suffered to parameter uncertain-
ties caused by heat transfer coefficient decreases with ℎ =
(1 − 0.01𝑡)ℎ. Two extended high gain observers are de-
signed to generate a set of residuals achieving fault detec-
tion and isolation in individual sensors. Observer 1 is fed by 
output of sensor 𝑇𝑝 to estimate the whole states and param-
eter while observer 2 uses output of sensor 𝑇𝑢.  Advantages 
of the proposed FDI methodology drop on that if one sensor 
is faulty, we can use the estimated value generated by the 
healthy one to replace the faulty physical value, thus provid-
ing a healthy virtual measure. 
Case 1:  abrupt faults occur at output of sensor 𝑇𝑝 at t=80s, 
100s, with an amplitude of 0.3℃, 0.5℃ respectively.the re-
sults are reported in Fig.5-8.   
 
 

 

 

 

 

Fig. 5 output temperature of both fluid in case 1 by observer 

1, red curve demonstrates the estimated value while black 

one is the measured value.  

It is obviously that since t=80s, �̂�𝑢 (red curve) cannot track 

𝑇𝑢 (black curve) correctly, while it needs about 0.2s for �̂�𝑝 

to track 𝑇𝑝 at t=80s and t=100s. It suggests that faults occur, 

then the following task is to identify size and location of 

faulty sensors. Fig.6 and Fig.7 achieves the goal. It takes 

0.1s and 0.3s for isolating the faults at 80s, 100s respec-

tively.  

             

             

                       Fig.6 isolation residual in case 1. 
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Fig.7b fault signature in case 1, obviously, faults only occur 

at output of sensor 𝑇𝑝. 

For fault recovery, we can employ observer 2 as soft sensor 

to generate a health value for faulty sensor 𝑇𝑝 . Observer 2 

uses only measured 𝑇𝑢 to estimate all states and parameters. 

Therefore, �̂�𝑢, �̂�𝑝 generated by observer 2 are only decided 

by 𝑇𝑢 . In case 1, faults occur only on sensor 𝑇𝑝, sensor 𝑇𝑢 is 

healthy, that is to say �̂�𝑢, �̂�𝑝 generated by observer 2 will be 

satisfied their expected values. As shown in Fig.8, we can 

see that since 𝑇𝑢 is healthy, estimated value �̂�𝑢 tracks meas-

ured 𝑇𝑢 perfectly, while estimated value �̂�𝑝 (red curve) does 

not track the faulty measured value 𝑇𝑝 (black curve), �̂�𝑝 (red 

curve) illustrates the expected value for sensor 𝑇𝑝, we can 

use estimate �̂�𝑝 (red curve) to replace measured faulty value 

 𝑇𝑝 ( black curve) for fault recovery. 

Fig.8 fault recovery in case 1, red curve demonstrates the 

estimated value while black one is the measured value.  

If there are faults occurred only on output of sensor 𝑇𝑢, the 

same results can be yield easily. For multi and simultaneous 

faults on both sensors, we can still isolate the faults cor-

rectly. Case 2 will verify this point.    

Case 2: simultaneous faults imposed to the outputs of sen-

sors  𝑇𝑝 as in case 1 and  𝑇𝑢 at t=80s with amplitude of 0.6℃. 

Results are reported in Fig.9-10. Residuals are beyond their 

threshold obviously at time 80s, 100s. 

It can be seen from Fig.9, Fig .10 that the proposed FDI 

scheme can isolate faults correctly, and it takes 0.25s, 0.4s 

for isolating the faults in sensor  𝑇𝑝 at 80s, 100s and 0.2s for 

isolating that in sensor 𝑇𝑢 at t=80s respectively. Compared 

with Case 1, more times is needed in this Case 2. 

 

 

Fig. 9 isolation residual in case 2 

 

 

                Fig 10. Fault signature in case 2 

4.4 Fast process fault isolation and identification 

Process fault is related to variation of overall heat transfer 

coefficient (h). The heat transfer coefficient is considered as 

variable which undergoes either an abrupt jumps (by an ex-

pected fault in the flow rate) or a gradual variation (essen-

tially due to fouling). For incipient variation, since fouling 

in intensified heat-exchanger/reactor is tiny and only influ-

ence dynamics, we have employed extended high observers 

to ensure the dynamic influenced by this slowly variation. 

Therefore, the abrupt changes in heat transfer coefficient ℎ 

can only be because of sudden changes in mass flow rate. It 

implies that the root cause of process fault is due to actuator 

fault in this system.  

Supposed an abrupt jumps in ℎ at t=40 from 214.8 to 167.   

 

       Fig.11 detection residual in process faulty case 

From Fig.11, at t=40s, unlike sensor fault cases, the residual 

leaves zero and never goes back, this indicates that process 

fault occurs. For fast fault isolation and identification, we 

use the methodology of parameter interval filters developed 

in [11]. In [2], heat transfer coefficient ℎ changes between 

130.96 and 214.8, then ℎ is divided into 4 intervals as shown 

in table 2 and simulation results are shown in Fig.12. It can 

be seen at t=40s, only index for interval 150-170 goes to 

zero rapidly, then there is a fault in this interval. The faulty 

value is estimated by  ℎ̂𝐴 =
1

2
(ℎ𝑎𝐴 + ℎ𝑏𝐴) =

1

2
(150 +

170) = 160. We can see it is closely to actual faulty value 

167, and if more intervals are divided, the estimated value 

may be closer to the actual faulty value. 
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               Table 2 parameter filter intervals 

Interval NO. 1 2 3 3 

ℎ𝑎𝐴 130 150 170 190 

ℎ𝑏𝐴 150 170 190 214 

 

Fig.12 “non_containing fault” index sent by parameter filter 

5 Conclusion 

An integrated approach for fault diagnose in intensified 

heat-exchange/reactor has been developed in this paper. The 

approach is capable of detecting, isolating and identifying 

failures due to both sensors and parameters. Robustness of 

the proposed FDI for sensors is ensured by adopting a soft 

sensor with respect to parameter uncertainties. Ideal isola-

tion speed for process fault is guaranteed due to adoption of 

parameter interval filter. It should be notice that the pro-

posed method is suitable for a large kind of nonlinear sys-

tems with dynamics models as the studied system.  Appli-

cation on the pilot heat-exchange/reactor confirms the ef-

fectiveness and robustness of the proposed approach. 
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