Skill-based Team Formation in Software
Ecosystems

Daniel Schall !

Abstract. This paper introduces novel techniques for the
discovery and formation of teams in software ecosystems. For-
mation techniques have a wide range of applications including
the assembly of expert teams in open development ecosys-
tems, finding optimal teams for ad-hoc tasks in large enter-
prises, or working on complex tasks in crowdsourcing environ-
ments. Software development performance and software qual-
ity are affected by the skills and application domain experi-
ences that the team members bring to the project. Team for-
mation in software ecosystems poses new challenges because
development activities are no longer coordinated by a sin-
gle organization but rather evolve much more flexibly within
communities. A suitable approach for finding optimal teams
must consider expertise, user load, social distance and collab-
oration cost of team members. We have designed this model
specifically for the analysis of large-scale software ecosystems
wherein users perform development activities. We have stud-
ied our approach by analysing the R ecosystem and find that
our approach is well suited for the team discovery in software
ecosystems.

1 Introduction

Establishing a software ecosystem becomes increasingly im-
portant for a companies’ collaboration strategy with other
companies, open source developers and end users. The idea
behind software ecosystems differs from traditional outsourc-
ing techniques [19, 22]. The initiating actor does not necessar-
ily own the software produced by the contributing actors nor
are contributing actors hired by the initiator (e.g., a firm).
All actors as well as software artefacts, however, coexist in an
interdependent way. For example, actors jointly develop ap-
plications and thus there is a relationship among the actors.
Software components may depend on each and thus there is a
relationship among the components. This is a parallel to nat-
ural ecosystems where the different members of the ecosys-
tems (e.g., the plants, animals, or insects) are part of a food
network where the existence of one species depends on the
rest. In contrast to natural ecosystems, some software ecosys-
tems may be mainly top-down controlled, with most changes
driven by change requests and bug reports coming from other
actors [20]. Other software ecosystems may be controlled in
a bottom-up manner, primarily driven by input from its core
developers [21].

1 Siemens Corporate Technology, Siemensstrasse 90, 1211 Vienna,
Austria, email: daniel.schall@siemens.com

A key challenge in software ecosystems is to manage quality
of software [8, 9, 15] and addressing nonfunctional require-
ments (NFRs) in general [4]. Software vendors may require
their plug-in developers to maintain certain quality levels to
deserve an approved status. As shown in earlier research, indi-
vidual as well as development team skill has a significant effect
on the quality of a software product [5, 7, 12]. The approach in
this work takes a socio-technical view on software ecosystems
wherein ecosystems are understood as the interplay between
the social system and the technical system [11, 13]. Software
development teams composed of members with prior joint
project experience may be more effective in coordinating pro-
grammers’ distributed expertise because they have developed
knowledge of who knows what [12]. This paper addresses the
problem of team formation in open, dynamic software ecosys-
tems. In open source development teams are more often than
not formed spontaneously (i.e., they ‘emerge’) based on peo-
ple’s availability, willingness to collaborate and to contribute
to a certain task.

Potential tasks for expert teams in software ecosystems and
open source development include:

e Come up with a software design and/or implementation of
a complex component or subsystem.

e Perform software architecture review of an existing imple-
mentation or provide expert opinion about an emerging
technology.

To give a concrete example of a potential high-level task, a
complex design or implementation may involve the analysis of
timeseries data including data extraction from a source sys-
tem, transformation of the data, storage, processing, and visu-
alization. Clearly, this task typically requires multiple people
with distinct skills such as data modelling, statistical knowl-
edge (uni-/multivariate data analysis), data persistence man-
agement, and data visualization using various technologies
and toolkits. Indeed, the high-level task needs to be further
decomposed into smaller task. The goals of this work is to
find a team of experts given a set of high level skills. Once
the team has been discovered, detailed task decomposition
and work planning can be performed, which is however not in
the focus of this work.

We provide the following key contributions:

e A novel approach supporting team formation in software
ecosystems based on user expertise, load, social distance
among team members, and collaboration cost.

e Support the discovery of potential mediators if social con-
nectedness in teams is low.

e Analysis of user expertise to recommend the most suitable
team members.

e Evaluation of the concepts using data collected from the
Comprehensive R Archive Network (CRAN) - the largest
public repository of R packages.

The remainder of this paper is organized as follows. In Sec-
tion 2 we overview related work and concepts. In Section 3
we introduce our team formation approach. Experiments are
detailed in Section 4. The paper is concluded in Section 5.

2 Related Work

The success of a project depends not only on the expertise
of the people who are involved, but also on how effectively
they collaborate, communicate and work together as a team
[17, 26]. On the one hand, a team must contain the right set
of expertise, but on the other hand one should determine a
staffing level that, while comprising all the needed expertise,
minimizes the cost and contributes to meeting the project
deadline [10]. The most critical resource for knowledge teams
is expertise and specialized skills in using and handling tools.
But the mere presence of expertise in a team is insufficient
to produce high-quality work. A team must collaborate in an
effective manner. It has been found that prior collaborative
ties have a profound effect on developers’ project joining de-
cisions [12].

In software engineering, team formation is often needed to
perform a development or maintenance activity. A general
trend is the growing number of large scale software projects,
software development and maintenance activities demanding
for the participation of larger groups [6, 14]. In [3], the authors
proposed assignment of experts to handle bug reports based
on previous activity of the expert. Social collaboration on
GitHub including team formation has been addressed in [18].
The authors [2] study the problem of online team formation.
In their work, a setting in which people possess different skills
and compatibility among potential team members is modelled
by a social network. It has to be noted that team formation in
social networks is an NP-hard problem. Thus, optimization
algorithms such as genetic algorithms [29] should be consid-
ered in solving the team composition problem [31].

Expertise identification is one of the key challanges and suc-
cess factors for team work and collaboration [16]. The discov-
ery of experts is becoming critical to ease the communication
between developers in case of global software development or
to better know members of large software communities [30].
Network analysis techniques offer a rich set of theories and
tools to analyse the topological features and human behaviour
in online communities. We have extensively studied the au-
tomatic extraction of expertise profiles in our prior research
(see [24, 25, 27]) and build upon our social network based
expertise mining framework.

With regards to team formation in open source commu-
nities as well as software ecosystems, there is still a gap in
related work and to our best knowledge there is no existing
approach that supports formation based on mined expertise
profiles.

3 Formation in Ecosystems

Here we present the overall team formation algorithm. We
employ a genetic algorithm that attempts to find the best
team. Genetic algorithms (GAs) mimic Darwinian forces of
natural selection to find optimal values of some function [23].

For each team a single number denoting the team’s fitness
is calculated (where larger values are better).

3.1 Genetic Algorithm Outline

There are multiple objectives that need to be optimized. The
objectives are to:

e maximize the average expertise score for given skills
e minimize the average cost
e minimize the average distance

The team with the best trade-off among these objectives
shall obtain the highest fitness and will be recommended as
the best fitting team. The required team skills are stated by
customers who wish to assign a specific complex task to a
team of experts — be it within a corporation or outsourcing
a specific task to the crowd. Our assumption is that such com-
plex tasks demand for the expertise of multiple team mem-
bers. Within our formation approach, additional constraints
can be considered such as one person shall only cover one skill
and not multiple ones. Indeed, in practice people are familiar
with multiple topics thereby covering multiple skills. Factors
such as matching user load with complexity, effort, and dead-
line of a task are not in focus of this work. The reader may
refer to [25] for further information on these topics.

The main computational steps of our formation approach
are introduced and elaborated in detail in Algorithm 1. The
relevant lines in Algorithm 1 are specified in parenthesis.

1. Based on the set S = {s1,52,...,,} of demanded skills,
prepare a mapping structure that holds skills, users U, and
expertise ranking scores (lines 6-9). In this step, current
user load is evaluated (based on previously assigned tasks)
and users with high load are filtered out.

2. Initialize a population of individuals. An individual is a
team consisting of n team members where n can be config-
ured. The parameter n is given by the size of the skill set
S if each team member has to provision exactly one skill
(line 12).

3. Loop until max iterations have been reached and compute
the main portion of the genetic algorithm based search
heuristic. Finally, after this loop select the team with the
highest fitness (lines 14-48).

4. Depending on the ecosystems community structure and the
demanded set of skills, teams may have good or poor con-
nectivity in terms of social links among team members.
Therefore, construct a subgraph of the social collaboration
graph Gs containing only the nodes from the best team
and their edges between each other. Analyse the connec-
tivity of this subgraph by computing the average number
of neighbours (lines 50-51).

5. If connectivity is low, try to find a dedicated coordinator
who is ideally connected to all team members through so-
cial links. The role of the coordinator is to mediate com-
munication among members and strengthen team cohesion
(line 53-56).

Algorithm 1 Formation algorithm.

1: input: skills S, population size p_size,

2: elitism elitism_k, max iterations maz_iter

3: output: best individual - team with the highest fitness
4: # init mappings of skills, users, scores
5 M <«

6: for Skill s € S do

7 m < get RankingScoreM apping(s)

8: M][s] < m # add mapping

9: end for

10: # initialize population of

11: # randomly composed individuals

12: P « createPopulation(S, M, p_size)

13: iter <— 0 # iteration counter

14: while iter++ < max_iter do

15: # new population

16: P’ « create Empty Population(p_size)

17: # obtain a ranked list

18: R <+ rankPopulation ByFitness(P)

19: # elitism - copy small part of the fittest
20: for i =0...elitism_k — 1 do
21: # add to population
22: P'[i] « getIndividual ByRankIndex(R,1)
23: end for
24: # build new population
25: i < elitism_k
26: while i < p_size do
27: # stochastically select from P
28: 1] < rouletteW heelSelection(P)
29: # crossover
30: if random Number < crossover_rate then
31: # assign new offspring

32: I[0] + crossover(I[0],I[1])

33: end if

34: # mutation

35: if randomNumber < mutation_rate then
36: # assign mutated individual

37: I[0] < mutate(I[0])

38: end if

39: # add new offspring
40: P'i++] < I]0]

41: end while
42: # assign the new population
43:. P« P
44: # evaluate population - total fitness
45: evaluate(P)
46: end while
47: # this is the best team
48: I + findBestIndividual(P)
49: # construct a graph (G based on [

50: Gt + extractSubGraph(Gsg,I)

51: if checkConnectivity(Gr) < ¢ then

52: # find node to increase connectivity
53: u + findCoordinator(Gr)

54: if u # null then

55: addNode(Gr,u)

56: end if

57: end if

58: # extract the node set Ny C U from Gy
59: N1 « getNodes(Gr)

60: return N; # node set of best team members

3.2 Detailed Computational Steps

In the following we detail the steps in the algorithm and ex-
plain additional functions that are invoked while executing
the formation algorithm.

8.2.1 Rank Expertise by Skills

Expertise profiles are not created in a predefined, static man-
ner. Expertise is calculated based on actual community contri-
butions. However, we do not attempt to analyse detailed user
contributions in terms of software versioning control systems
but rather focus on ‘high-level’ package metadata thereby fol-
lowing a less privacy intrusive approach. The method used for
determining the expertise scores is not within the focus of this
work due to space limits. The interested reader may refer to
[27, 28] for information on the basic approach.

8.2.2 Basic Selection Strategies

An initial set of candidate solutions are created and their cor-
responding fitness values are calculated. This set of solutions
is referred to as a population and each solution as an indi-
vidual (i.e., the team composed of team members). The indi-
viduals with the best fitness values are selected and combined
randomly to produce offsprings, which make up the next pop-
ulation. The approach of selecting a subset of individuals with
the best fitness values is called elitism. Elitism is realized by
copying the fittest individuals to the next population.

To maintain a demanded population of individuals, individ-
uals are selected and undergo crossover (mimicking genetic
reproduction). For the team formation approach this means
that team members are swapped between two teams. The ba-
sic part of the selection process is to stochastically select from
one generation to create the basis of the next generation (see
rouletteW heelSelection in line 28). The requirement is that
the fittest individuals have a greater chance of survival than
weaker ones. This replicates nature in that fitter individuals
will tend to have a better probability of survival and will go
forward. Weaker individuals are not without a chance. In na-
ture such individuals may have genetic coding that may prove
useful to future generations [1].

Individuals are also subject to random mutations. However,
the probability of mutation is low because otherwise the ge-
netic algorithm would be just a random search procedure. In
our work we apply a ‘smart’ approach to mutation and do
not select a replacement team member at random. Rather, a
new team member is predicted and voting is performed by
the existing team members.

3.2.8 Relationship-driven Mutation

In traditional GAs, which are agnostic to the underlying na-
ture of the population, mutation takes place by exchanging a
gene by a random gene thereby maintaining genetic diversity.
Here we perform prediction of edges between existing team
members and newly randomly selected team members. If a
threshold is surpassed, the randomly suggested team mem-
bers is added to the team. This prediction approach ensures a
much higher likelihood that the new team member will work
within the team more effectively. We propose random forests
for predicting edges between pairs of users. Random forests
are a simple yet effective and robust method for classifica-
tion problems. Prediction of edges between pairs of users is
performed by modelling features describing the relationship
between two nodes u and v. At a high level, these features in-
clude common neighbours, the jaccard similarity index, joint
community interest, and joint package dependencies.

3.2.4 Fitness Function

The last important ingredient of our GA based approach is
the design of a workable fitness function. A fitness function
is a type of objective function that is used to provide a sin-
gle number. The idea is to discard ‘bad’ team configurations
(i.e., individuals) and to breed new ones from the good config-
urations. The search heuristic is terminated when either the
overall fitness converges or the maximum number of iterations
have been reached.
The fitness function computes the value ®; as

®; = wy * expertise + wa * cost + ws * distance (1)

where w1 + w2 + ws = 1. Each of the input factors
expertise, cost, distance needs to be scaled between 0 and
1. ®; is computed when invoking the function evaluate (see

Algorithm 2 Fitness function.

1: input: skills S, individual I, ranking score mapping M
2: output: fitness value ®; € [0, 1] of individual I

3: metrics < () # metrics as basis for fitness

4: score < 0 # team expertise score

5: popularity <— 0 # popularity - to approximate cost
6: for Skill s € S do

7 u < I[s] # get member by skill

8: rs < M|[s][u] # expertise score by skill

9: # perform feature scaling

10: T'/S 1= maz?nﬂaf[ds(]]yf[i)znz&[s])

11: score < score + 1,

12: # get user degree in Gs

13: ky + degree(Gs,u)

14: # perform feature scaling

15 ki, ¢ Emes—ku

16: popularity < popularity + ki,

17: end for

18: # add average team expertise score to metrics
19: addMetric(metrics, score/|S|)

20: # add average popularity to metrics

21: # higher community popularity means higher cost
22: addM etric(metrics, popularity/|S|)

23: dist < 0 # social distance

24: Q < queue([)

25: while Q # 0 do

26: u < poll(Q)

27: for v € Q do

28: # unweighted shortest path distance
29: # d(u,v) computed in Gg

30: duv = d(u,v)

31: if dy, # null then

32: # perform feature scaling

33: # lower values are better

34: # max(Gg) is diameter of graph
35 dy - R e

36: dist + dist + d,,

37: end if

38: end for

39: end while

40: Gi extractSubGraph(Gs,I)

41: # add average distance to metrics
42: addM etric(metrics, dist/|edges(Gr)|)
43: &7+ 0

44: for m € metrics do

45: b7 ¢ &7 + w,y, * metric

46: end for

Algorithm 1 line 45). Later on ®; is used to rank the pop-
ulation by fitness (see Algorithm 1 line 17) as well as when
calling findBestIndividual (see Algorithm 1 line 48).

Algorithm 2 details the computational steps of an individ-
ual [I’s fitness as defined by Eq. 1. An approximation of a
cost factor is provided by community popularity in terms of
number of neighbours in the social graph Gs. Thus, according
to this logic more popular users are also more expensive. A
perfect fitness score, given a set of skills .S, would be 1. This
is however impossible to achieve because expertise is also in-
fluenced by the user degree in Gs. Thus, a suitable tradeoff
among these factors has to be found. The individual with the
highest fitness within the population is then selected and rec-
ommended as the best team.

3.2.5 Coordinators

Based on the set of demanded skills and community structure,
it may not be possible to find teams with good connectiv-
ity among the team members. The last steps in Algorithm 1
would be to check the connectivity of I and to find a dedicated
node who is ideally connected to all nodes in I to mediate
communication. All nodes in U matching this constraint are
then ranked based on their averaged expertise given the skill
set S. The discovered node acting is potential team coordina-
tor is added to the final team.

4 Experimental Evaluation
4.1 R Ecosystem

In this section we present our experiments. We focus on one
part of the R ecosystem called the Comprehensive R Archive
Network (CRAN). Other R-based communities not considered
in this research are, for example, Bioconductor?. We have im-
plemented a Web crawler to download® and parse R software
package meta information available as HTML pages. This in-
formation includes contributing authors and package depen-
dencies. In addition, CRAN provides so called CRAN task
views, which are used in our analysis as skill or topic infor-
mation. As an example, a given task view Bayesian Inference
would be a single skill.
Figure 1 shows the package authorship graph Ga.

Figure 1. Authorship graph (subset).

2 https://www.bioconductor.org
3 https://cran.r-project.org, accessed on June 2016

50 500
L1 Lo

Num Clusters

5 10

o

kY
5
2
.

%0

©

@
om

Num Users

500

50

o

o

°
%9°

® @™ ©°
00CO®B 0 @

T

o

5 10

50 500

Num Nodes

5000

T
1

T
2

T
5 10 20

Degree

T T T
50 100

Figure 2. Clusters. Figure 3. Degree Gg.

In Fig. 1, only a subset is shown due to space limits. There
are many more small clusters as those at the bottom of the
figure. The community has one large cluster, the largest con-
nected component (LCC) of the graph, containing 8985 nodes
which are either users or packages. There are many smaller
clusters with few users contributing to packages and also
many users that contribute only to one single package.

Figure 2 shows the number of clusters versus the number
of nodes in it (log-log scale). The LCC is depicted by the dot
at the very bottom right corner of the figure. The majority of
clusters has only few or just a single user package tuple. This
also means that only users within the single largest connected
component will be relevant for our analysis. Since we heavily
rely on user degree in the social graph Gs, many users in the
small clusters will have very low importance.

Figure 3 shows the degree distribution of the user graph Gs.
Low degree of many users is explained by the large number
of small clusters, which are mainly individual contributors
of single packages. The graph Gs consists of 11189 users. A
fraction of 14% has a degree of 0 and 60% of users have a
degree smaller or equal 3. The median* degree is 85. A fraction
of 0.7% of users (74 users) have a degree larger than 85. Such
degree distributions are typical in online communities.

The next Fig. 4 shows the relationship between CRAN task
views and users. These views are interpreted as skills and ex-
pertise ranking is performed within the context of individual
task views. In total, 33 views exist. 7316 users are not associ-
ated with any view (because their packages are not listed in
any view). Thus, those users will not be considered in the for-
mation algorithm. 3873 users are associated with one or more
views. The median value for the number of views within this
user segment is 11. This provides already a good diversity in
terms of users having different skills.

The next step is to analyse the relationship between users
and software packages. Figure 5 shows the number of users
over packages. The median value for the number of software
packages is 20. The dependencies of packages are visualized
by Fig. 6. 4550 packages have exactly one dependency (the R
environment). The median value is 10.

Finally, Fig. 7 shows the average number of dependencies
by the number of users. The median value for the average
number of dependencies is clearly 2.

4 The median is used to separate the higher half of the user popu-
lation from the lower half.

Num Users

100 1000 10000

10

1000 10000
I I

Num Users
100
I
o

am o - 4

Num Views

10 20

Num Packages

Figure 4. Views. Figure 5. Packages.

500 5000
L1
o
o

Num Packages
50
o

Num Dependencies

Figure 6. Dependencies.

Num Users
=
5

o 1 2 3 4 § & 7 8 9 10 11 12 13

Average Num of Dependencies

Figure 7. User dependencies.

4.2 Experiments Setup

In our experiments, we sampled a random set of CRAN task
views representing the demanded team skills. The crossover
probability is set to 0.7 and the mutation probability to
0.05. The metric weights for fitness calculation are set to
Wscore = Weost = Wdistance = % In each experiment run,
a population of 200 individuals plus 5 individuals for elitism
has been created. We evaluate the quality of the expertise
mining approach by checking key metrics such as degree of a
user, number of packages in a given view (where the user is
top-ranked), and number of all packages.

4.3 Qualitative Evidence

A team with the highest fitness for 5 skills is depicted by Fig. 8
and detailed in Table 1. The team has an average expertise
score of 0.8, a cost of 0.6, and distance 1.0. These are excellent
values. A perfect fitness of 1.0 is not attainable because there
is a tradeoff between expertise and cost. Indeed, the maximum
achievable fitness depends on the selected skills.

Table 1.

Example of team recommendation for 5 skills.

[Skill [User [Rank | Score [Score (Gs) | Ch. [Deg. (Gs) [Pkg [All Pkg | Deg. (T) |
Num. Math. A. Gebhardt 9 0.07681 0.00027 201 36 2 11 4
Bayesian M. Machler 1 0.87039 0.00150 0 276 1 57 4
Meta Analysis T. Lumley 2 0.36787 0.00060 21 86 4 34 4
Social Sciences | W. N. Venables 8 0.19568 0.00021 509 50 5 10 4
Psychometrics K. Hornik 1 0.85807 0.00113 4 318 3 71 4

Thomas Lumley (MetaAnalysis)

Brian D. Ripley (<Coordinator

)

n-Machler (Bayesian)

Overall Fitness
80 90 100 110 120 130 140 150

Iteration

Figure 9. P-fitness.

Best Individual Fitness

060 065 070 075 080 085
I
\l
T

Iteration

Figure 10. I-fitness.

Albrecht Gebhardt

WillianiN. Venables

(NumericalMathematics)

(SocjalSciences)

Kurt Hornik (Psychometrics)

Figure 8. Example team spanning 5 skills.

Table 1 shows further team member details. Rank is the
user rank within the specific task view (community rank for
the given skill). Score is the numeric ranking score based on
our advanced expertise mining model and Score (Gs) is the
ranking score computed in Gs using a standard PageRank.
This comparison essentially demonstrates the impact of our
advanced context-based ranking model (see [27, 28]). Ch. is
the ranking change (context-based vs. standard PageRank).
One can see that context has a high impact in terms of ranking
position. We positively validated these results by checking the
online profiles of the top-ranked users because most users have
public Web sites. Deg. (Gs) depicts the degree (number of
co-authors) in Gg. High degree typically means high commu-
nity standing. Pkg depicts the number of packages in a given
view and All Pkg all packages of the given user. Deg. (T)
is the team degree. Here we see a perfectly connected team
where each member is connected to all other members. The
user ‘Brian D. Ripley’ is selected as the coordinator.

4.4 Performance Evaluation

We show the convergence of fitness values for both entire pop-
ulations (depicted as P-fitness in Fig. 9) and for the best in-
dividuals in each population (depicted as I-fitness in Fig. 10).
Convergence means that no major changes between one iter-
ation to the next iteration are observed. 5 skills have been
selected randomly. Different color codes depict 5 runs of GA
formation algorithm. The best teams were identified after 7
iterations. Population fitness started to settle at 10.

In the following we answer the question whether an in-
creasing number of skills results in more disconnected teams.
Fig. 11 compares different populations with an increasing
number of skills (from 5 to 9 skills depicted by S5 to S9).

° S5
0
g7 /‘\
© T T T T T
2 4 6 8 10
S6
o - T T f T T
2 4 6 8 10
S§7
e T T T T T
2 4 6 8 10
S8

0 30
11111

0 30
1111

Figure 11. Skills vs. number of disconnected team.

The x-axis shows the number of disconnected team mem-
bers and the y-axis the number of teams within the population
(total number of populations is 205). The figures show that
by increasing the number of skills the number of teams where
only few members are disconnected decreases. More skills to
be satisfied by individual users increases the chance that team
members are disconnected from the rest of the team.

5 Conclusions

This work introduced team formation mechanisms for soft-
ware ecosystems. We apply a genetic algorithm including a
novel extension called relationship-driven mutation. In devel-
opment teams, performance and quality are affected by the
programming skills and domain experiences of the project’s
team members. We apply an advanced expertise mining ap-
proach to address this problem. Empirical results confirm the
applicability of our presented methods.

Future work includes the following aspects. Estimating col-
laboration cost is not trivial and may depend on many fac-
tors, such as physical co-location, geographical distribution
(including issues related to time difference), or cultural fac-
tors. We will analyse and model cost of collaboration. We
will perform further evaluations of the approach in two di-
rections. First, we want to validate results by engaging com-
munity members of the R ecosystem to get direct feedback
on formation and expertise ranking results. Second, we will
broaden team formation experiments for other types of soft-
ware ecosystems including industrial and company internal
software ecosystems. An additional area of investigation is
the consideration of formal skill frameworks such as SFTAS.

REFERENCES

[1] Newcastle University, Roulette
http://goo.gl/5CGi8t, Jan. 2007.

[2] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aris-
tides Gionis, and Stefano Leonardi, ‘Online team formation in
social networks’, in Proceedings of the 21st international con-
ference on World Wide Web, WWW ’12, pp. 839-848, New
York, NY, USA, (2012). ACM.

[3] John Anvik and Gail C. Murphy, ‘Reducing the effort of bug
report triage: Recommenders for development-oriented deci-
sions’, ACM Trans. Softw. Eng. Methodol., 20(3), 10:1-10:35,
(August 2011).

[4] Jakob Axelsson and Mats Skoglund, ‘Quality assurance in
software ecosystems: A systematic literature mapping and re-
search agenda’, Journal of Systems and Software, 114, 69 —
81, (2016).

[5] Justin M. Beaver and Guy A. Schiavone, ‘The effects of de-
velopment team skill on software product quality’, SIGSOFT
Softw. Eng. Notes, 31(3), 1-5, (May 2006).

[6] Christian Bird, David Pattison, Raissa D’Souza, Vladimir
Filkov, and Premkumar Devanbu, ‘Latent social structure in
open source projects’, in Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’08/FSE-16, pp. 24-35, New York,
NY, USA, (2008). ACM.

[7] Barry W. Boehm, ‘Improving software productivity’, Com-
puter, 43-47, (1987).

[8] Jan Bosch, ‘From software product lines to software ecosys-
tems’, in Proceedings of the 13th International Software Prod-
uct Line Conference, SPLC 09, pp. 111-119, Pittsburgh, PA,
USA, (2009). Carnegie Mellon University.

[9] M. Claes, T. Mens, and P. Grosjean, ‘On the maintainability
of cran packages’, in Software Maintenance, Reengineering
and Reverse Engineering, 2014 Software Evolution Week, pp.
308-312, (Feb 2014).

[10] Massimiliano Di Penta, Mark Harman, and Giuliano An-
toniol, ‘The use of search-based optimization techniques to
schedule and staff software projects: An approach and an em-
pirical study’, Softw. Pract. Ezper., 41(5), 495-519, (April
2011).

[11] R.P. dos Santos and C.M.L. Werner, ‘Treating social dimen-
sion in software ecosystems through reuseecos approach’, in

wheel selection.

5 https://www.sfia-online.org

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

(22]

(23]
(24]

25]

[26]

27]

(28]
(29]

(30]

(31]

Digital Ecosystems Technologies (DEST), 2012 6th IEEE In-
ternational Conference on, pp. 1-6, (June 2012).

Jungpil Hahn, Jae Y. Moon, and Chen Zhang, ‘Emergence of
new project teams from open source software developer net-
works: Impact of prior collaboration ties.’, Information Sys-
tems Research, 19(3), 369-391, (2008).

Geir K. Hanssen, ‘A longitudinal case study of an emerging
software ecosystem: Implications for practice and theory’, J.
Syst. Softw., 85(7), 1455-1466, (July 2012).

Qiaona Hong, Sunghun Kim, S. C. Cheung, and Christian
Bird, ‘Understanding a developer social network and its evo-
lution’, in Proceedings of the 2011 27th IEEE International
Conference on Software Maintenance, ICSM ’11, pp. 323—
332, Washington, DC, USA, (2011). IEEE Computer Society.
S. Jansen, A. Finkelstein, and S. Brinkkemper, ‘A sense of
community: A research agenda for software ecosystems’, in
Software Engineering - Companion Volume, 2009. ICSE-
Companion 2009. 31st International Conference on, pp. 187—
190, (May 2009).

Aniket Kittur, Jeffrey V. Nickerson, Michael Bernstein, Eliz-
abeth Gerber, Aaron Shaw, John Zimmerman, Matt Lease,
and John Horton, ‘The future of crowd work’, in Proceed-
ings of the 2013 Conference on Computer Supported Cooper-
ative Work, CSCW ’13, pp. 1301-1318, New York, NY, USA,
(2013). ACM.

Theodoros Lappas, Kun Liu, and Evimaria Terzi, ‘Finding
a team of experts in social networks’, in Proceedings of the
15th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’09, pp. 467-476, New York,
NY, USA, (2009). ACM.

Anirban Majumder, Samik Datta, and K.V.M. Naidu, ‘Ca-
pacitated team formation problem on social networks’; in Pro-
ceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’12, pp. 1005—
1013, New York, NY, USA, (2012). ACM.

Konstantinos Manikas and Klaus Marius Hansen, ‘Software
ecosystems - a systematic literature review’, J. Syst. Softw.,
86(5), 1294-1306, (May 2013).

Tom Mens, Malick Claes, Philippe Grosjean, and Alexander
Serebrenik, ‘Studying evolving software ecosystems based on
ecological models’, in Evolving Software Systems, eds., Tom
Mens, Alexander Serebrenik, and Anthony Cleve, 297-326,
Springer Berlin Heidelberg, (2014).

Tom Mens and Philippe Grosjean, ‘The ecology of software
ecosystems’, IEEE Computer, 48(10), 85-87, (2015).

David G. Messerschmitt and Clemens Szyperski, Software
Ecosystem: Understanding an Indispensable Technology and
Industry, MIT Press, Cambridge, MA, USA, 2003.

Melanie Mitchell, An Introduction to Genetic Algorithms,
MIT Press, Cambridge, MA, USA, 1998.

Daniel Schall, ‘Expertise ranking using activity and contex-
tual link measures’, Data Knowl. Eng., 71(1), 92-113, (2012).
Daniel Schall, Service Oriented Crowdsourcing: Architecture,
Protocols and Algorithms, Springer Briefs in Computer Sci-
ence, Springer New York, New York, NY, USA, 2012.
Daniel Schall, ‘Formation and interaction patterns in social
crowdsourcing environments’, Int. J. Commun. Netw. Dis-
trib. Syst., 11(1), 42-58, (June 2013).

Daniel Schall, ‘Measuring contextual partner importance in
scientific collaboration networks’, Journal of Informetrics,
7(3), 730 — 736, (2013).

Daniel Schall, Social Network-Based Recommender Systems,
Springer International Publishing, 2015.

M. Srinivas and L.M. Patnaik, ‘Genetic algorithms: a survey’,
Computer, 27(6), 17-26, (June 1994).

Cédric Teyton, Marc Palyart, Jean-Rémy Falleri, Floréal
Morandat, and Xavier Blanc, ‘Automatic extraction of de-
veloper expertise’, in 18th International Conference on Eval-
uation and Assessment in Software Engineering, EASE ’14,
pp. 8:1-8:10, New York, NY, USA, (2014). ACM.

Hyeongon Wi, Seungjin Oh, Jungtae Mun, and Mooyoung
Jung, ‘A team formation model based on knowledge and col-
laboration’, Ezxpert Systems with Applications, 36(5), 9121 —
9134, (2009).

