
The Beagle++ Toolbox: Towards an Extendable
Desktop Search Architecture

Ingo Brunkhorst, Paul - Alexandru Chirita, Stefania Costache,
Julien Gaugaz, Ekaterini Ioannou, Tereza Iofciu,
Enrico Minack, Wolfgang Nejdl and Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{brunkhorst, chirita, costache, . . .}@l3s.de

Abstract. The rapidly increasing quantity and diversity of data stored
on our PCs made locating information in this environment very difficult.
Consequently, recent research has focussed on building semantically en-
hanced systems for either organizing or searching data on the desktop.
Building on previous work, in this paper we present the Beagle++ tool-
box, a set of extendable building blocks for implementing such a sys-
tem. The corresponding modular desktop search architecture integrates
our previously developed metadata generators and ranking components,
uses an RDF database to share data between components, and can easily
integrate other external components to improve desktop search quality.
Additionally, we provide implementation details about all our current
components, how they interact with each other, and how to install the
complete system on top of a Linux distribution.

1 Introduction

Most leading search companies have recently created and offered free desktop
search applications. For managing your desktop’s several gigabytes of data, these
tools build and maintain an index, typically by collecting two types of informa-
tion: (1) file and directory names and (2) content of supported documents. At
present, only very few of the deployed desktop search engines also collect very
basic metadata information, such as titles, authors or comments, usually already
contained in the files being indexed. Yet very few people spend time annotating
their documents, and thus this functionality provides only a limited improvement
over text-based search.

On the other hand, the desktop environment provides a lot of semantic rela-
tionships which should be used to enhance search on the desktop. When search-
ing their desktops, users usually search for very specific items they have already
worked with (otherwise why not search the Web?), such as an email from a col-
league, a photo or movie taken on a special occasion, the contact information of
a friend, etc. Satisfying such a search requires semantic information.



Our previous work within the Beagle++ context [4, 6] has started to investi-
gate means to represent and use this semantic information, and has introduced
several innovative modules to enhance a desktop search application. In this pa-
per we focus more on the architectural aspect of such a toolbox, and discuss how
to utilize these modules into an extendable full-fledged semantic desktop search
application. We describe the different types of modules, ranging from metadata
generation to indexing and ranking desktop resources, as well as the communica-
tion channels and interfaces they use. We also discuss the issues arising from the
need to merge metadata from different sources, and discuss the different parts of
a desktop ontology as well as functionality for entity identification in our system.

Specifically, the next section presents the modular toolbox architecture we
rely upon, focusing on the set of metadata extraction and generation modules.
Section 3 then discusses the desktop ontology used by all modules to ensure
coherent metadata, and proposes solutions for the problem of merging the meta-
data produced by the different modules. Section 4 focuses on related work, sec-
tion 5 summarizes the main ideas of this paper and presents future work and
research issues.

While this paper focuses on the Beagle++ toolbox, part of this work is be-
ing done in the context of the NEPOMUK project1, which aims at creating the
Social Semantic Desktop. It does so by extending a regular Desktop in two di-
rections: (1) towards a Semantic environment by enabling the use of semantic
descriptions of desktop objects and their relationships, and (2) towards a Social
environment by enabling the communication with other desktops connected in
a social network. Our Beagle++ toolbox is a first step towards this vision, and
will be integrated with contributions from our partners into the future Social
Semantic Desktop NEPOMUK project infrastructure.

2 The Beagle++ Modular Desktop Search Architecture

As basis for our Beagle++ environment we use the open source Beagle desktop
search engine2 for Linux, which we extend with advanced searching and rank-
ing capabilities exploiting semantic information. Figure 1 illustrates the overall
Beagle++ architecture. White boxes represent the original Beagle components,
gray colored ones represent our extension modules and white/gray boxes corre-
spond to Beagle components which we modified. In the following, we describe
this architecture in detail, and then present its components for metadata gener-
ation, storage, indexing and ranking.

2.1 Architectural Overview

The Beagle Control Process is the core component of the Beagle architecture and
is in charge of dispatching indexing and searching requests to the appropriate
1 http://nepomuk.semanticdesktop.org/
2 http://www.beaglewiki.org/



Fig. 1. Beagle++ Architecture Overview

modules. All file system events (files being created, modified or deleted) caught
by the Inotify-enabled Linux Kernel are sent to the Beagle Control Process,
which generates the requests to update the information in the index. For each
request, the Filesystem Queryable selects an appropriate Filter for extracting
the content, as well as the metadata of the files. This extracted information
is indexed by the Lucene Full-text Index module and stored in the Metadata
Storage Module. Each Filter processes a specific type of file, identified by filename
extension or MIME type (e.g. application/pdf). Based on the type of information
extracted, the Beagle++ Filters are classified into two categories: Content Filters
and Metadata Filters, the latter representing one of our extensions to the original
Beagle architecture.

Best++ implements the search interface of our desktop search engine and
is responsible for the routing of search requests from the user to the Beagle
Control Process, which hands them to the Queryable Data Sources. These try to
find relevant results matching the queries both in the Full-text Index and in the
Metadata Storage Module. The search results gathered from the Full-text Index
are merged by the Control Process into one list of result documents, which is
enriched by Best++ with metadata and ranking information extracted from the
Metadata Storage Module.



Fig. 2. Beagle++ Metadata Components

2.2 Metadata Extraction and Generation Components

The original Beagle architecture uses Filters to extract content from specific
types of documents. The actual creation of a text-based representation of the
content needed for indexing is usually not done directly in Beagle, but del-
egated to third-party tools. When new documents are to be indexed, Beagle
searches its library for suitable Filters for extracting the content, as well as ba-
sic properties, for example title and author in the case of PDF documents. For
metadata extraction in Beagle++ we use a similar approach: We extended the
Filter interface with a third functionality, which in addition to the content ex-
traction also extracts the metadata from the corresponding documents. Figure 2
presents the different strategies for metadata creation which are currently im-
plemented in Beagle++. Most of the implemented metadata processing facilities
for Beagle++ can be classified into three different approaches: First, extraction
via a single Filter component, integrated into the original Beagle’s filter archi-
tecture; second, metadata creation with a stand-alone tool, which is supported
by a Beagle-integrated component with additional information; third, a pure
stand-alone metadata component working solely with data from the Metadata
Storage Module, and run at regular intervals. The last strategy is used for RDF
indexing and ObjectRank computations as described in Sections 2.4 and 2.5.

The Beagle++ metadata creation components are composed of the Generic
Filter Implementation, the actual Metadata Generator Component, and an op-



tional Stand-Alone Component. The Generic Filter is a wrapper that registers
itself as a Filter in the Beagle infrastructure and receives events related to files
of the supported types. Instead of processing metadata on its own, it delegates
the actual work to beagle-independent tools, which are usually invoked using a
shell script providing the URI of the document to be processed. Beagle++ Com-
ponents are not limited to using the data extracted from documents, but often
rely on additional data sources as well. Stand-alone tools gather metadata on
their own, which are then used by other components. The following components
are currently implemented:
Metadata Extraction using a single Filter component:

Path Annotation. Folder hierarchies are barely utilized by the search algo-
rithms, in spite of the often sophisticated classification hierarchies users con-
struct. For example, pictures taken in Hanover could be stored in a directory
entitled “Germany”, so it would be useful if we could use this information for
search. The path annotation component annotates files with each token in their
file path, as well as additional semantic information provided by the WordNet
system3, such as synonyms, hyponyms, hypernyms, meronyms and holonyms [4].

Scientific Publications. In the research community, many papers are available
in PDF format. Although PDF allows basic metadata annotations like title and
authors, this is rarely used. We developed a tool which extracts metadata from
files using the publicly available Citeseer4 and DBLP5 databases. Its main idea
is to first pre-compute word vector representations of the titles stored in these
databases, such that we can search for title candidates consisting of the first
words of a publication. If the title is found, we query for additional information
like authors or conference, year of publication, etc. from these databases.

Publication Bibliography Data. BibTeX documents are common for storing
publication references. It is also common to share these files with co-authors or
the local group of researchers. Our tool creates RDF metadata from each BibTeX
file found on the desktop, including keys, titles, authors, and other annotations
available in the BibTeX format. The data created by this module complements
the metadata extracted by the Scientific Publications module.

WebCache. This component facilitates the users’ search for web pages by
starting from a familiar or prominent web site. We broadened the notion of
“visited link” by defining it as a web page that was previously visited by the
user (the link’s target page is present in the browser cache). At run-time, for
enhancing navigation, all these visited links are highlighted. These metadata are
created for every web page in the cache, containing the links that have been
visited from that page, as well as the in-going links from which the user could
have arrived to it (inverse of a visited link).

3 http://wordnet.princeton.edu/
4 http://citeseer.ist.psu.edu/
5 http://dblp.uni-trier.de/



Metadata Extraction using a Stand-Alone Application,
with and without support from a Filter component:

Emails and Attachments. We developed two components following this ap-
proach: (1) The email client and (2) the beagle-integrated Filter for the “email
attachment - stored file” link creation. The email client is a simple stand-alone
process that monitors the users’ email account on any POP3 or IMAP-capable
mail-server. For each email object an RDF description is created with informa-
tion from the header, body and the available attachments. The second com-
ponent uses a Filter integrated into Beagle to check for each recently stored
document if it was contained in the attachment of a received email. Connec-
tions between a document and an email attachment are described according to
our ontology and made persistent as a link between resources in the Metadata
Storage Module.

2.3 Metadata Storage

While our approach for metadata extraction and generation allows us to easily
incorporate additional generators and filters to cover more types of desktop ob-
jects, managing all these metadata becomes a major issue. We therefore designed
a Metadata Storage Module to handle all these metadata in a uniform manner,
keeping in mind that the metadata will come from different applications and dif-
ferent sources. Also, the Metadata Storage Module has to be able to incorporate
metadata from generators and filters, designed and developed by other partners
in the NEPOMUK project.

The repository is the core component of this module, which is realized as
a Sesame repository [3] running as a web application under Apache Tomcat,
backed by a MySQL database for the actual data storage. Metadata can be
accessed in two ways, either through the web-services provided by the Sesame
application under Tomcat, or through the Sesame-API for Beagle++. This is a
Java-API which provides a subset of the functionality of the Sesame API with
specific Beagle++ customizations. The Beagle++ Metadata Storage Module does
not only unify metadata from different sources and applications, but also pro-
vides a generic mediator framework for manipulating these metadata. Currently,
Beagle++ uses the Metadata Storage Module to perform two essential processes.
The first process is the ObjectRank computation, explained in Section 2.5, and
the second one is the Entity Identification algorithm, explained in Section 3.2.

The Metadata Storage Module provides a solid ground for incorporating ad-
vanced functionalities into Beagle++. The most important functionality is that
it acts as a mediator between the modules which create metadata and the mod-
ules using it, ensuring that Beagle++ remains a modular toolbox. For example,
consider implementing a new filter for extracting information from a specific
type of desktop objects. Incorporating this filter into Beagle++ requires only the
use of the appropriate methods from the Beagle++ Sesame-API which insert its
metadata into the Sesame repository. Another advanced functionality lies in the
ability to easily design and execute algorithms on the collected metadata. Such



algorithms directly query the metadata found in the Sesame repository, process
them and store any possible results back to the Sesame repository.

2.4 Indexing

Basic Lucene Indexing.
Beagle uses Lucene6 as a back-end high performance full-text search engine.

Lucene is a multi-purpose information retrieval library for adding indexing and
search capabilities to various applications. Its indexing process breaks down into
three main operations: converting data to text, analyzing, and storing it into
its index structures. As most full-text search engines, Lucene implements an
extended version of the vector space model, which supports fragmentation of
the vector space into separate namespaces (denoted as “fields” in the actual
implementation). Thus, a term does not only represent indexed words of the
document’s body, but also states the context in which the word appears. The
“default” context is the full-text of the document, whereas other contexts often
describe metadata such as author or title. Two terms sharing the same literal are
treated as non-equal if they appear in different fields. Finally, Lucene provides an
efficient way to search for phrases which is not directly supported by the vector
space model. Lucene maintains a “positional index” which contains for each
term the exact positions in each document. Positional indices add another form
of “context” besides the notion of separate term fields, namely the proximity of
terms in one single field.

Beagle (i.e. its Lucene component) creates two parallel indices for each doc-
ument. The first index contains full-text fields for storing keywords and several
fields for metadata, one per property. The second index contains property fields
for metadata. The two indexes are used for allowing querying different fields
at the same time. Beagle does not search for context information outside the
documents, so usually almost no metadata is present in a standard Beagle in-
stallation.

RDF Indexing. Metadata indexing can be accomplished in several ways.
The approach used in Beagle defines one field per metadata predicate (e.g., one
for “description”, one for “title”, etc.). While the idea to use separate fields is
well suited for directly annotated metadata, it is not suitable for metadata paths.
Furthermore, the ability to rank documents by metadata literals is lost because
the TFxIDF measure used by the vector space model does not span across fields.

In Beagle++ we therefore use one single field for all metadata associated to a
document. For each directly associated statement, we store both predicate and
object of the statement as text in this field. This makes storage independent of
any underlying RDF schema, as the predicates are represented as terms rather
than field names. To describe more complex contexts, we store predicate paths,
representing the properties which are not directly annotated to the document,
but can be reached by following a path in the RDF graph starting from the
document node via subject–predicate–object connections. RDF fragments can

6 http://lucene.apache.org/



then simply be matched using phrase queries on the metadata field, and results
are returned almost instantaneously, as querying reduces to lookup operations
in the Lucene index.

Path Materialization and Updating. As described above, our extended
documents consist of full-text plus associated RDF metadata. This associated
RDF metadata graph has to be materialized in a full-text search infrastructure
in order to guarantee efficient retrieval and integrated search. For example, given
the statements [R1 p1 R2] and [R2 p2 R3], we are able to address R3 from R1 via
the path p1/p2. In a relational database, path traversal can be implemented by
performing join operations on the RDF resources, which are costly operations
especially when performed very frequently within a large scale data set. We avoid
these joins in our full-text search environment by materializing paths, creating
“expanded” statements like [R1 p1/p2 R3] and associating them to R1, as any
other directly annotated metadata.

Path materialization is only feasible for a limited number of paths. We are
currently experimenting with different options, restricting path materialization
to start from full-text documents and stop as soon as we exceed a certain path
depth or reach another full-text document. This is because we want to re-index
only documents for which metadata has changed, and we can find out which are
these documents just by searching the Lucene index.

2.5 Ranking Module

Overview. The Ranking Module provides enhanced ranking capabilities for our
desktop search engine. Unlike current desktop search engines, which rely only on
basic TFxIDF measures for ranking the search results, we use a combination of
the TFxIDF scores provided by the original Beagle application with additional
ObjectRank values. As stated in [6], ranking computation on the desktop per-
forms poorly without contextual information, which is used to reconstruct the
links among the resources. Therefore, our ObjectRank computation relies on the
input provided by the Metadata Storage Module and the Metadata Generator
Modules.

The ranking module consists of two components, (a) one being in charge
of the ranking computation (ObjectRank Computation Component) and (b) one
handling the combination of the TFxIDF and ObjectRank scores (Re-ranking
Component). The ObjectRank computation is transparent to the applications
using the ObjectRank values: the computed scores become available as soon as
the generators and extractors have written their metadata into the Metadata
Storage Module.

ObjectRank Computation Component. The ObjectRank computation
is based on the Beagle++ ontologies and on the corresponding authority transfer
schema. The ontologies are extended by adding weights and edges in order to
express how importance is propagated among the entities and resources described
by the ontology. Weights and edges represent authority transfer annotations
extending the ontology with the information we need to compute ranks for all
instances of the classes defined in the ontology.



As illustrated in [2], the authority transfer schema graph and the schema
graph (here our Beagle++ ontologies) reveal some significant redundancy. In
order to reduce that to a minimum we define the authority transfer schema graph
by annotating our Beagle++ ontologies with forward and backward weights to
edges that transfer authority. An RDF graph that conforms to this schema is
the main configuration for the ObjectRank Computation Component. For the
ranking computation, the first component uses the PageRank formula

r = d · A · r + (1 − d) · e (1)

applying the random surfer model and including all nodes in the base set. The
random jump to an arbitrary resource from the data graph is modeled by the
vector e. A is the adjacency matrix which connects all available instances of the
existing context ontology on one’s desktop.

For creating the adjacency matrix A, the component makes use of the Beagle++

ontologies for extracting all metadata entries from the RDF store, created by
the different Metadata Generator Modules. Being stored as triples, following the
RDF subject-predicate-object model, the entries in the Sesame store provide the
linkage information among the resources. The weights of the links between the
instances correspond to the weights specified in the authority transfer schema
graph. When instantiating the Beagle++ontology for the resources existing on
the users desktop, the corresponding matrix A will have elements which can ei-
ther be 0, if there is no edge between the corresponding entities in the data graph,
or have the value of the weight assigned to the edge in the authority transfer
schema graph divided by the number of outgoing links of the same type. Once
the matrix A is created, the rank computation is performed and the Object-
Rank Computation Component writes the results back to the RDF Store. These
new entries also follow the RDF subject-predicate-object model: the subject is
represented by the URI of the resource whose ObjectRank is being stored, the
predicate is a special property referring to the ObjectRank score, and the object
is a float value representing the score itself.

Re-ranking Component. In contrast to the ObjectRank Computation
Component, which runs as an independent application, the second component of
the Ranking Module is integrated in Beagle. However, users have the possibility
to choose one of the two ranking schemes: the one provided by the standard
Beagle installation, based on TFxIDF measures, or the one we developed for
Beagle++, based on ObjectRank combined with TFxIDF. The first scheme is
implicit. For the second one users have to start the Best++ client with an addi-
tional parameter.

The new ranking scheme we developed benefits both from the advantages of
TFxIDF and those of ObjectRank. The new scores are computed as a combina-
tion of them using the following formula:

R′(a) = R(a) · TFxIDF(a), (2)

where a represents the resource, R(a) is the computed ObjectRank, TFxIDF(a)
is the TFxIDF score for resource a and R′(a) is the resulting score. The formula



guarantees that the highest ranked resources have both a high TFxIDF and a
high ObjectRank score. The re-ranking is performed at query time, as we extract
the ObjectRank values from the Sesame repository only for those resources which
were returned by Beagle, i.e., those having a TFxIDF score greater than zero.
Thus, the computation still delivers the output search results very fast.

3 Merging Metadata from Different Sources

Merging metadata from different sources means merging schema information
as well as instance information. We will discuss our current solutions for both
of these issues in this section. In the first subsection, we describe our Desktop
Ontology, being developed in the context of the NEPOMUK project, which
aims at providing an extensible ontology for desktop metadata. In the second
subsection, we tackle the problem that metadata is provided by different sources,
often with multiple identifiers for the same entity.

3.1 Desktop Ontology

In an environment such as Beagle++, a large number of developers rely on the
desktop ontology, and the functionalities of the environment need to be fully
exploited in numerous and different domains. Second, part of the data present
on our desktops is already—at least partly—annotated, for example by EXIF
metadata7 embedded in most of JPEG files. This implies that we need an easily
extensible ontology which copes with existing metadata.

Based on these requirements we propose three ontology layers, inspired by
[14]. Figure 3a shows the connections between these layers8, in which an arrow
indicates that an ontology makes references to the elements defined in the pointed
ontology. Figure 3b is an example of the Publication class using elements defined
in the three layers. We will briefly describe each of these layers.

The Data Ontology9 models the metadata already present on our desktop,
such as name and creation date for a “File”, or more specific properties for
subclasses of “File” (e.g., GPS coordinates for EXIF). Finally, beside all the
existing types of desktop files, we also defined “Email” as a separate class, as it
represents another important kind of desktop resource.

The Desktop Ontology10 models the most common conceptual objects
associated with the desktop items. It is centered around the classes “Person”
and “Desktop Document”, while their sub-classes focus on more specific concepts
such as “Image”, “Sound”, or “Text”.

The Domain Ontologies11 model domain-dependent objects. They repre-
sent specific functionalities in our desktop environment, or specific concepts for
7 http://www.exif.org/specifications.html
8 Part of this hierarchy is a result of joint discussions with Leo Sauermann from DFKI.
9 http://www.kbs.uni-hannover.de/beagle++/ontology/data\#

10 http://www.kbs.uni-hannover.de/beagle++/ontology/desktop\#
11 http://www.kbs.uni-hannover.de/beagle++/ontology/domain l3s\#



the user’s institute or company. While we will usually have several domain on-
tologies, in our current context we rely on a single domain ontology with classes
such as “Conference”, “Wordnet Term”, or “Publication”.

The use of layers gives two advantages: (1) controlled heterogeneity, as appli-
cations have a minimal set of common concepts to cooperate on (i.e., the Data
and Desktop Ontologies), and (2) flexibility through the Domain Ontologies, in
which additional metadata can be defined. We are currently implementing a new
feature of the Metadata Storage Module, which will verify that every inserted
RDF statement conforms to these ontologies, expressed in RDFS.

Data Ontology

Beagle++
Domain Ontology

Desktop Ontology

(a)

l3s:
Publication

desk:
Desktop Documentdesk:Textis a is a

l3s:cites /
l3s:cited by

l3s:
Visited Citeseer

WebPage

l3s:
referenced by

data=http://www.kbs.uni-hannover.de/beagle++/ontology/data#
desk=http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#
l3s=http://www.kbs.uni-hannover.de/beagle++/ontology/domain_l3s#
xmls=http://www.w3.org/2001/XMLSchema#

data:
File

desk:stored as

desktop:
Person

desk:author

xmls:string

desk:title

(b)

Fig. 3. (a) Beagle++ ontology hierarchy overview; (b) Specific subset of the Beagle++
ontology, focusing on Publications.

3.2 Entity Identification

Our Metadata Storage Module has to be able to merge metadata from different
sources, which may refer to one entity using different identifiers. In our context,
references to persons for example will be provided by different applications. A
person can be the sender of an email, a co-author of a publication or even the
co-author of a publication that is referred by your own publication. Each of these
applications uses a different method to describe the specific person. For example,
email address is used in the email context, full names in publications and the
name’s acronym in the reference publication. Since the main goal of merging all
metadata is to enable us to coherently describe any desktop object, we need to
discover all these different identifiers (i.e. email address, full name, and acronym)
that refer/define a specific entity (i.e. person). The goal of Entity Identification
is to discover all existing entities in a Metadata Storage Module and identify the
objects which refer to these entities.

In our current Beagle++ environment, this Entity Identification problem is
relatively limited because the metadata schema is rather small and fully known
(Section 3.1). In this schema we identified the attributes which describe the same



entity, named multi-purpose attributes. Multi-purpose problematic attributes for
the entity “Person” are “email address” found in an email, “author” found in
a publication, “creator” found in a document, and others. The Entity Identifi-
cation algorithm is executed every time metadata is inserted into the Metadata
Storage Module. We parse the new metadata to find whether they contain any
multi-purpose attributes, and compare the value of these attributes with the
value of the entities already stored in the repository. This comparison can give
two conclusions. The first is that this object is a new entity and therefore it
should be inserted as one. The second is that this object refers to an existing
entity, such that no entry should be created for this entity, but only a link to
show that this object refers to the specific entity. Comparison is done using a
technique providing an approximation for the similarity between two strings,
called SecondString [7].

The result of the Entity Identification algorithm is a set of cleaned metadata
that describes the entities in a coherent way, which records for each entity the
different references used to identify it. During search, Beagle++ uses this infor-
mation to exploit all information about an entity regardless of the identifier used
in its metadata.

4 Related Work

Several search and retrieval systems make extensive use of the semantical rela-
tionships that can be inferred on the desktop. Haystack [10] for example em-
phasizes the relationship between a particular person and her corpus. It creates
RDF connections between documents with similar content and then exploits this
information for facilitating browsing and information access. Unlike our work,
their focus is on organizing the data, rather than searching it. Some basic search
facilities came with Magnet [12], an additional Haystack component, yet relying
on database querying approaches, which are complementary to ours.

The Gnowsis project [11] adds Semantic Web interfaces to common desktop
applications such that documents are linked across applications and users are
able to use their personal computer as a small personal semantic web. A number
of adapters read data from different sources and make this information available
as RDF. Created metadata is stored in a local RDF database and can be viewed
through a browser. Additionally, this browser shows related information for re-
sources and can be used for annotating photos or persons, for linking resources,
as well as for full text search.

In [4, 5] we described our Beagle++ personal information system, a seman-
tically enriched extension of the Beagle open source desktop search engine. We
proposed various heuristics to generate ample activity based metadata associ-
ated to each desktop item. In addition, we generated links between resources in
a similar manner to Haystack [10] and we applied a schema-based PageRank [2]
to compute reputation scores. In this paper we do not focus on single innovative
modules designed for a specific task, but rather present the toolbox architec-



ture and components which enables these modules to communicate and function
properly.

Semantically enhanced search was also addressed from other perspectives, as
in Stuff I’ve Seen [9], where contextual cues (e.g., access time, or author) are
used to enrich search results, or as in Swoogle [8], in which information retrieval
capabilities are offered for semantic documents residing on the Web.

Other algorithms focus more on the ranking scheme than on the semantically
inferable connections on the desktop. Meza et al. [1] develop a ranking technique
for the possible semantic associations between the entities of interest for a specific
query. They define an ontology for describing the user’s interest and use this
information to compute weights for the links among the semantic entities. In
our system, the user’s interest is a consequence of her activities, this information
being encapsulated in the properties of the entities defined, and the weights for
the links being manually introduced.

An interesting technique for ranking the results of a query on the semantic
web takes into consideration the inferencing processes that led to each result [13].
In this approach, the relevance of the returned results for a query is computed
based upon the specificity of the relations (links) used when extracting infor-
mation from the knowledge base. The calculation of the relevance is however
a problem-sensitive decision, and therefore task oriented strategies should be
developed for this computation.

Finally, the difficulty of accessing information on our computers has prompted
several releases of desktop search applications recently, such as Google desk-
top search 12 (proprietary, for Windows) or the Beagle open source project for
Linux13. Yet they only include already existing metadata in their system, such
as email sender or file type, and otherwise focus on full-text search.

5 Conclusions and Further Work

In this paper we presented the architectural design details necessary for im-
plementing a semantically enhanced desktop search application. We proposed a
modular architecture and toolbox, in which components such as metadata gener-
ators and ranking calculators are easily integrated. Our current implementation
of this toolbox builds upon a snapshot of the standard Beagle implementation,
namely the version shipped with SUSE Linux 10.0. We provide a set of rpm-
packages installable in SUSE 10.0 on our official Beagle++ web site14, together
with a ready-to-use virtual machine image for the VMware Player.

Motivated by the strong results Beagle++ illustrates, we are currently inves-
tigating several directions for improvements. First, we want to incorporate more
advanced metadata generators and filters into the indexer, for example to cope
with complex RDF path materialization and updating strategies. Second, we
will generalize the suggested algorithms from Beagle++’s specific environment
12 http://desktop.google.com/
13 http://www.gnome.org/projects/beagle/
14 http://beagle.l3s.de/



(i.e., Linux) and provide them also for Windows based search implementations.
Finally, we will focus on a Beagle++ version for supporting work groups and
other social networks, and will include modules and interfaces for communica-
tion between distributed Beagle++ clients.

References

1. B. Aleman-Meza, C. Halaschek, I. B. Arpinar, and A. Sheth. Context-aware se-
mantic association ranking. In Semantic Web and Databases Workshop, 2003.

2. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based
keyword search in databases. In Intl. Conf. on Very Large Databases, 2004.

3. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In Intl. Semantic Web Conf., 2002.

4. P. A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity based
metadata for semantic desktop search. In Proc. of the 2nd ESWC, 2005.

5. P. A. Chirita, S. Ghita, W. Nejdl, and R. Paiu. Semantically enhanced searching
and ranking on the desktop. In Proc. of the Semantic Desktop Workshop held at
the 4th Intl. Semantic Web Conf., 2005.

6. P. A. Chirita, S. Ghita, W. Nejdl, and R. Paiu. Beagle++: Semantically enhanced
searching and ranking on the desktop. In Proc. of the 3rd ESWC, 2006.

7. W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics
for name-matching tasks. In Workshop on Inf. Integration on the Web, 2003.

8. L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi,
and J. Sachs. Swoogle: A search and metadata engine for the semantic web. In
Proc. of the 13th ACM Conf. on Information and Knowledge Management, 2004.

9. S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff i’ve
seen: A system for personal information retrieval and re-use. In SIGIR, 2003.

10. D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha. Haystack: A customiz-
able general-purpose information management tool for end users of semistructured
data. In Proc. of the 1st Intl. Conf. on Innovative Data Systems Research, 2003.

11. L. Sauermann and S. Schwarz. Gnowsis adapter framework: Treating structured
data sources as virtual rdf graphs. In Intl. Semantic Web Conf., 2005.

12. V. Sinha and D. R. Karger. Magnet: supporting navigation in semistructured data
environments. In Proc. of the ACM SIGMOD Intl. Conf. on Mgmt. of Data, 2005.

13. N. Stojanovic, R. Studer, and L. Stojanovic. An approach for the ranking of query
results in the semantic web. In Intl. Semantic Web Conf., 2003.

14. H. Xiao and I. F. Cruz. A multi-ontology approach for personal information man-
agement. In Proc. of the 1st Workshop on The Semantic Desktop (ISWC), 2005.


