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Abstract: Current research in Learning Analytics is also concerned with creating personalized 

learning paths for students. Therefore, Recommender Systems are used to suggest the next object to 

learn or pre-computed paths are recommended. However, the time of the requested learning session 

and the freedom of choice are often not considered. Respecting certain course deadlines and 

providing the user with choice is a very important aspect of recommendations. In this work, we 

present an approach to creating personalized paths through knowledge networks. These paths are 

constructed by considering the time at which they are requested and suggest alternative routes to 

provide the user with a choice of preferred learning items. An evaluation gives precision measures 

that have been obtained with different lengths for the Top-N recommendations and different 

branching factors in the paths and compares the results with other Recommender Systems used in 

Adaptive Learning Environments. 

Keywords: Learning Analytics, personalized learning paths, multi-modal routes 

1 Introduction 

Various educational stakeholders have identified adaptive learning as one of the most 

promising and at the same time most challenging trends of Learning Analytics [VMO12] 

[EFR15]. Thereby, various Recommender System (RS) techniques are used to provide a 

personalized learning experience to the user. This paper focuses on RS that recommends 

content in a specific course. The user gets the choice which subject to learn or skip. 

However, most of the research is focused on the recommendation of single learning items. 

When users want to obtain a complete overview of all offered learning items or to see the 

recommended order of the next learning items, traditional Collaborative Filtering 

algorithms need to be extended. The identification of item sequences is typically handled 

by a special group of Recommender Systems, as it requires knowledge about the relations 

between items instead of just predicting a relevance score per item. Shen and Shen [SS04] 

introduced a prediction model with a sequencing rule algorithm by taking a topic ontology 

into account. When the system identifies that a user lacks knowledge, appropriate contents 

are recommended. In this work, a novel Learning Path algorithm builds on this foundation. 
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This algorithm recommends paths of learning items dependent of the current state of the 

learner.  

The remainder is structured as follows: Chapter 2 introduces related work and, especially, 

different learning path strategies. Chapter 3 gives an overview of the developed algorithm 

and Chapter 4 presents a deep dive. Chapter 5 discusses the evaluation results and, finally, 

this paper ends with a conclusion and an outlook. 

2 Related Work 

A common technique for the presentation of item relations is to create a database with 

directed graphs, including nodes for items (which are, in our case, the learning items to be 

recommended) and edges for their relations [ABB03] [VS06] [YW09]. Thereby, different 

approaches are frequently utilized to create the needed item sequences. Six key approaches 

are described in the following: 

1. Teacher's Sequence: Teachers and educational staff have the best knowledge of the 

taught topics and the intended knowledge transfer. Thus, they model item sequences 

manually and in a pedagogical way [DHK09].  

2. Content-based Analysis allows for the generation of a topical structure without the 

supervision of humans. It rather analyzes the content, especially textual input, to 

automatically generate dependencies.  

3. Constraint-based Approaches are similar to manually defined structures in allowing 

for more choice in the personal learning directions with some predefined restrictions 

[ABB03] [VS06]. For instance, the learners might appreciate the opportunity to 

freely choose the next learning item as long as all prerequisites are fulfilled. 

4. The Knowledge-based Approach is based on the previously acquired knowledge of 

the learner, e.g., by presenting a survey at the beginning of a course or by letting the 

user answer some related questions when accessing the content. According to the 

determined knowledge, well-known items are filtered out, and items with new topics 

gain a higher relevance [YW09].  

5. Activity-based Analysis: The set of user activities can be utilized to generate item 

dependencies based on the past consumption activities of learners [DHK09]. This 

approach requires a sufficient number of users and interactions.  

6. Hybrid Combination: Similar to Hybrid Filtering, the hybrid combination of 

approaches represents the most powerful class, as it overcomes the weaknesses of 

single approaches.  

Most publications allocate an important role to user feedback for learning path generations 

in terms of the learners' interests and knowledge levels. Drachsler et al. [DHK09] note that 

explicit user feedback, such as ratings or tags, helps to identify paths in learning networks 
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in a more efficient way than other input types. Voss et al. developed an adaptive sequencer 

that uses Matrix Factorization as the performance predictor [VSM15]. With the same 

approach, Schatten and Schmidt-Thieme tried to ''keep the contents in the Vygotskis Zone 

of Proximal Development (ZPD) [VYG80], i.e., the area where the contents neither bore 

or overwhelm the learner'' [SS14]. In each calculation step, the system selects contents 

with a predicted performance score that is most similar to the user's modeled score. 

Researchers of the Worcester Polytechnic Institute [XWB15] enhance long-term retention 

of acquired knowledge by creating a Personalized Adaptive Scheduling System for 

retention tests. Another example of learning paths was realized by Nabizadeh et al. 

[NMP17]: They restricted the item sequence to those learning items that allow ''obtaining 

the maximum possible learning score in a limited time'' [NMP17]. While path creation 

algorithms are frequently utilized for the prediction of learning sequences (cf. [ABB03] 

[VS06] [YW09] [NMP17]), none of them consider the presentation of alternative routes 

with path branches. However, the idea of a Recommender System is to offer different 

choices in a particular situation. This work focuses on an approach that incorporates paths 

with branch alternatives which are then presented to the user. 

3 Approach and Context of Evaluation 

Our approach to predicting these personalized learning paths consists of two separate 

steps: The first step handles the definition of the knowledge graph that represents possible 

routes through the items. A hybrid combination of teacher-based, constraint-based and 

user-interaction-based approaches are utilized for building the knowledge graph. The 

direct transitions (edges) from one item (node) to another comprises a probability that 

describes the percentage of past transitions. Thereby, each historical path of learners is 

analyzed to create a knowledge graph and the probabilities. In other words: the more often 

users studied items in a particular order, the higher is the probability that this part of the 

path will be recommended to other learners in the future. 

The second step predicts an individual learning path for each learner in the given situation. 

Thereby, the past item accesses are considered for the requesting user to predict a 

personalized subpath. This future path starts at the last consumed item node and avoids 

other, previously seen, items. The idea is that the algorithm searches for the most efficient 

path through all left learning items in the before built knowledge graph. 

The result is a set of individual paths that lead through all offered items exactly once. 

Repeating or skipping items is not possible when consequently following the 

recommended route. However, an extension of step 2 might neglect items that are marked 

as ''known'' by the learner - which is not implemented for this evaluation. This approach 

has been evaluated with the Advanced Web Technologies (AWT) course, a course for 

master students of computer science at the Technische Universität Berlin. Five technical 
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experts taught in 12 presence lectures nine topics that are of interest for future web 

developers – from web technology basics, such as HTML, over media delivery and 

protection, to personalization through Recommender Systems (cf. [KMA17] [KRA18]). 

A group of 145 students enrolled in the course and 99 of them used a novel web application 

to access the course materials. Their interactions with the web app are collected for the 

evaluation of the learning path approach. We presented almost 1,000 Learning Objects 

grouped in about 100 Learning Units (LU) of the 9 main chapters. Besides a few videos 

and some interactive exercises, Learning Objects are mainly sets of slides that can be 

downloaded [KMA17]. Given the number of about 100 Learning Units within the course, 

there are about 10157 possible combinations of item sequences (100! ~ 9*10157) - not 

considering the about 1,000 Learning Objects that make up the 100 Learning Units. The 

learner, in turn, only needs to select one appropriate series, that is called Learning Path, to 

consume all given items. 

4 Algorithm Design 

The algorithm is inspired by routing plan algorithms for public transportation where trains 

follow particular schedules [ZA08]. The actual route of a passenger, however, is similar 

to the learner’s individual learning path in that it needs to follow some constraints (e.g., 

the lecture schedule) but allows for decisions at multiple points in time in respect of 

alternative routes. 

4.1 Dependency Graph 

The actual algorithm splits step 1 into two parts. At first, the AWT Learning Units are 

transferred into a graph database as nodes. Let I be a set of items belonging to the course 

C. Prerequisites, given as attributes in the meta-data according to IMS LOM4, are 

considered for a primary dependency graph. Prerequisites for the AWT Learning Units are 

manually defined and can be seen as constraints of a path that must not be violated - for 

instance the Learning Unit ''Concepts of Recommender Systems'' is a prerequisite for the 

Learning Unit ''Technical Issues in Recommender Systems''. The result is a dependency 

graph representing all allowed learning transitions. See Figure 1 for an example of the 

dependency graph with six items (LO1, ..., LO6) where LO2 is a prerequisite for LO3 

(LO3 → LO2), LO3 is a prerequisite for LO4 (LO4 → LO3) and LO5 a prerequisite for 

LO6 (LO6 → LO5). 
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Figure 1: Example of a dependency graph with six Learning Objects and three defined 

prerequisites (LO4 → LO3, LO3 → LO2 and LO6 → LO5). 

4.2 Knowledge Graph 

Secondly, based on the defined prerequisite constraints, all allowed combinations of items 

in I are listed. The subset s of items in I represents one possible learning state with all so-

far consumed items. S is the set of all possible states within the course: 

 

Each transition from one state to another is represented by a directed edge es1,s2 in E except 

where the transition violates the prerequisite definition. An edge connects two states s1 

and s2 where one item is added to s1 which results in state s2. E is the set of all edges. 

The directed transition edges are extended by an attribute that indicates the number of 

other learners who used the same transition in the past. More precisely, it represents a ratio 

of historic transitions etransitions between exactly the two states (s1 and s2) and the number 

of all historic transitions stransitions leaving s1. The result of the probability function p(e) 

determines the transition probability per edge e of historic movements of all learners and 

is given in percent:  

 

As an intermediate result, a knowledge graph K is generated that represents all possible 

states and transitions of the dependency graph between a start state B, which does not 

contain any item, and a target state T = C, which contains all items of the course. 

 

Figure 2 visualizes the example knowledge graph with the six items of the dependency 

graph example. This graph is computed offline and stored in a database to efficiently 

calculate individual paths in the future. 
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Figure 2: Example of a knowledge graph with the same six example Learning Objects of the 

dependency graph example. 

4.3 Path Generation 

When now a learner requests a path recommendation, all of the so far accessed items of 

that user are considered. The learner's accessed items correspond to a state in the 

knowledge graph K reflecting a new starting point Bu,t for user u at time t. When the user, 

for instance, accessed LO3, LO2 and LO4, the state {LO2, LO3, LO4} is the starting point 

for the routing algorithm. If the user violated the prerequisite definition and studied 

another item first, the state that shows the highest agreement of known items is considered 

as the start state.  

The routing algorithm identifies an ideal route r from the start to the target point T in the 

knowledge graph (marked with ''All'' in Figure 2). The target point T reflects all studied 

items in the course and thus the course goal. R is the set of all possible routes between B 

and T. Thereby, all probabilities of the taken edges on the route are summed (a 

multiplication would penalize smaller edge probabilities and was not evaluated in this 

research). Er is the number of edges of the route r. The path with the highest total 

probability ptotal(r) should be preferred. 
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The routing plan algorithm of Zografos and Androutsopoulos [ZA08] was used in the 

evaluation. It analyzes backwards the transitions from T to Bu,t by considering the 

probability p(e) per edge. Moreover, as the algorithm is designed for public transportation, 

it allows incorporating waiting times, when connecting. Transferred to the learning 

domain, this feature is used to penalize switches of the higher-level topics as the learner 

might better focus when working on similar topics at a time and encourage switches first 

when all low-level items belonging to one high-level item are processed. The result is a 

list of alternative routes with a number of branches b per node. Only those b branches are 

considered that show the highest transition probability p(e) from one edge to another. 

Instructors might adjust the total number of considered and presented branches. The 

implementation is realized as a Java server with the graph database neo4j5. 

 

Figure 3: Example of a path presented to the learner when LO2, LO3 and LO4 have been 

consumed. 

5 Evaluation 

The 16 weeks of the AWT course data is used as data set. The course ran from October 

24, 2016, until February 12, 2017. The test data comprises all 99 active users and 8,241 

activity statements on 106 Learning Units. The data is split 15 times into training and test 

data set by following the “increasing time-window cross validation” of Campos et al. 

[CDC14], where the time threshold shifts by seven days. Thereby, with each split, the 

duration of the training dataset increases by seven days, and the test dataset decreases by 

the same amount. Items are considered as relevant that have been processed by the same 

user after the point of time of the recommendation (see Krauss [KRA18] for details on this 

evaluation setting). Besides the split per week, which lead to 15 different time-dependent 

results, different sizes of branches per node are considered, which are given as b (b=1, 2, 

3, 5, 10 and 15). Moreover, the Top-N lists contain in different settings 3, 5, 10 or 15 

items. The evaluation was performed in 360 iterations (15 splits * 6 sizes of b * 4 lists). 
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Since the number of branches b and recommendations N are not necessarily equal, the 

Top-N list consists of the items with the lowest distance (number of edges) to the last 

accessed item (state Bu,t). When deciding for items with the same number of edges to the 

last accessed item, those with the highest transition probability are preferred. This is 

determined iteratively, starting with direct connected items. Given the example of b=3 and 

N=4, the 3 direct connected items are set on the Top-N list in the first iteration. Afterward, 

all 9 items that are connected via 2 edges to the start item are considered as the missing 

Top-N items. Thereby, the algorithm prefers the items with the highest transition 

probability. This is repeated until the Top-N list consists of N items where every item of 

the Top-N list must be unique. For the defined evaluation setting and in order to produce 

comparable results with the other approaches, the connections between the items (the 

actual learning path) is not of interest for the measurements (just for the selection process). 

For the evaluation, only the fact is evaluated that an item is part of the Top-N list. 

 The precision value represents the ratio of relevant items that have been recommended to 

all recommended items. Relevant items have been processed by the user after the point of 

time of the recommendation. Due to the vast amount of experiments, Figure 4 shows the 

precision of the main settings averaged over the whole course period. This is done to better 

compare the different settings. In general, the fewer the number of elements in the Top-N 

list, the more precise are the recommendations (Top-3 performs best when b>2). Over half 

of the recommended items are relevant (precision of up to 0.58). The number of branches 

does not have such a massive impact on the precision measure as the Top-N elements 

have. Nevertheless, it seems clear that b=10 is the best setting - and b=1 and b=2 perform 

almost identically low. 

We compared this approach to other approaches, known from the literature, in the same 

evaluation setting and utilizing the same data set (each in the most precise setting): The 

Slope One algorithm by Lemire et al. [LM05] reached a precision of only 0.459. An 

extension of this approach with time-weights from Jiang and Lu [JL13] improves this 

precision to 0.465. And the approach of Hermann [HER10] leads to a precision of 0.512  

 

Figure 4: Precision for different settings of the Top-N path recommendations. 
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under the same conditions. It is important to notice that the evaluation procedure of Krauss 

[KRA18] is designed to better tell about timely effects in real courses and, thus, the results 

are not comparable to results of common evaluations settings and datasets of other 

domains which often exceeds precision values of 0.8.  

6 Conclusions 

The precision of the introduced Learning Paths based on the activities of other learners is 

7 to 13% better than the precision of the other evaluated Collaborative Filtering 

algorithms. However, the most significant strength comes from the cold start phase, where 

the predicted Learning Paths rely on item metadata that have been entered by educational 

staff. Thus, even at the beginning of the course, the recommendations are highly relevant. 

The drawback comes from its static concept where every item is presented exactly once.  

The reasons why all evaluated approaches reach low precision values of under 0.6 lies in 

the setup of the evaluation framework and in the composition of the activity data. The 

algorithms are not trained with a random selection of activity data as known from the n-

fold cross-validation, but in a strict chronological order which higher weights temporal 

effects, such as the cold start, little activity during the course and a massive learning phase 

at the end. In the evaluated dataset, 65% of the students only infrequently learned with the 

system [KMA17] – which is typical for university courses. However, this circumstance 

also reduces the average precision. Moreover, items for the course introduction are often 

skipped by learners – but frequently recommended by the algorithms. An extension of the 

algorithm would, for this reason, also consider item skipping and repetitions. 

Acknowledgments 

The authors would like to thank the instructors of the AWT course and the whole Smart 

Learning Team. This work is supported by the German Federal Ministry of Education and 

Research grant number 01PD14002D and 01PD17002D.  

References 

[ABB03]  Atif, Y., Benlamri, R., & Berri, J. (2003). Learning objects based framework for self-

adaptive learning. Education and Information Technologies, 8(4), 345-368. 

[CDC14] Campos, P. G., Díez, F., & Cantador, I. (2014). Time-aware recommender systems: a 

comprehensive survey and analysis of existing evaluation protocols. User Modeling and 

User-Adapted Interaction, 24(1-2), 67-119. 

[DHK09] Drachsler, H., Hummel, H. G., & Koper, R. (2009). Identifying the goal, user model and 

conditions of recommender systems for formal and informal learning. Journal of Digital 

Information, 10(2). 

[EFR15]  Erdt, M., Fernandez, A., & Rensing, C. (2015). Evaluating recommender systems for 

technology enhanced learning: a quantitative survey. IEEE Transactions on Learning 

Technologies, 8(4), 326-344. 



 

Christopher Krauss, Andreas Salzmann and Agathe Merceron   

[HER10] Hermann, C. (2010, June). Time-based recommendations for lecture materials. In 

EdMedia: AACE World Conference on Educational Media and Technology. 

[JL13] Jiang, T. Q., & Lu, W. (2013). Improved slope one algorithm based on time weight. In 

Applied Mechanics and Materials (Vol. 347, pp. 2365-2368). Trans Tech Publications. 

[KMA17] Krauss, C., Merceron, A., An, T. S., Zwicklbauer, M., Steglich, S., & Arbanowski, S. 

(2017, October). Teaching Advanced Web Technologies with a Mobile Learning 

Companion Application. In Proceedings of the 16th ACM mLearn World Conference. 

[KRA18] Krauss, C. (2018, June). Time-Dependent Recommender Systems for the Prediction of 

Appropriate Learning Objects. Dissertation, Technische Universität Berlin, Deposit 

Once (http://dx.doi.org/10.14279/depositonce-7119), 2018. 

[LM05] Lemire, D., & Maclachlan, A. (2005, April). Slope one predictors for online rating-based 

collaborative filtering. In Proceedings of the 2005 SIAM International Conference on 

Data Mining (pp. 471-475). Society for Industrial and Applied Mathematics. 

[NMP17] Nabizadeh, A. H., Mário Jorge, A., & Paulo Leal, J. (2017, July). RUTICO: 

Recommending Successful Learning Paths Under Time Constraints. In Adjunct 

Publication of the 25th UMAP Conference (pp. 153-158). ACM. 

[SS04]  Shen, L. P., & Shen, R. M. (2004, August). Learning content recommendation service 

based-on simple sequencing specification. In International Conference on Web-Based 

Learning (pp. 363-370). Springer, Berlin, Heidelberg. 

[SS14] Schatten, C., & Schmidt-Thieme, L. (2014, April). Adaptive Content Sequencing 

without Domain Information. In CSEDU (1) (pp. 25-33). 

[VMO12]  Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., & Duval, 

E. (2012). Context-aware recommender systems for learning: a survey and future 

challenges. IEEE Transactions on Learning Technologies, 5(4), 318-335. 

 [VS06] Viet, A. N., & Si, D. H. (2006, September). ACGs: Adaptive Course Generation System-

An efficient approach to build E-learning course. In Computer and Information 

Technology, 2006. CIT'06 (pp. 259-259). IEEE. 

[VSM15] Voß, L., Schatten, C., Mazziotti, C., & Schmidt-Thieme, L. (2015). A Transfer Learning 

Approach for Applying Matrix Factorization to Small ITS Datasets. International 

Educational Data Mining Society. 

[VYG80] Vygotsky, L. S. (1980). Mind in society: The development of higher psychological 

processes. Harvard university press. 

[XWB15] Xiong, X., Wang, Y., & Beck, J. B. (2015, March). Improving students' long-term 

retention performance: a study on personalized retention schedules. In Proceedings of 

the Fifth International LAK Conference (pp. 325-329). ACM. 

[YW09] Yang, Y. J., & Wu, C. (2009). An attribute-based ant colony system for adaptive learning 

object recommendation. Expert Systems with Applications, 36(2), 3034-3047. 

[ZA08] Zografos, K. G., & Androutsopoulos, K. N. (2008). Algorithms for itinerary planning in 

multimodal transportation networks. IEEE Transactions on Intelligent Transportation 

Systems, 9(1), 175-184.  


