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Abstract. This paper considers an application of metaheuristic algorithms for solving the prob-

lem of convection velocity identification in the convection-diffusion transport model. Algo-

rithms based on numerical minimization of the parameter identification criterion for a discrete 

linear stochastic model using the simulated annealing and a genetic algorithm are proposed. 

The log-likelihood function is used as the identification criterion. Numerical experiments were 

conducted to compare the computational properties of the proposed algorithms. 

1. Introduction and problem statement 

Convection-diffusion transport models are an indispensable tool for describing various natural and an-

thropogenic processes [1], [2]. These models contain parameters that must be specified to uniquely de-

termine the solution of boundary value problems, but in practice, situations often arise where some of 

these parameters are unknown or given approximately and they need to be determined or refined. Such 

problems belong to the class of inverse problems for the models of matter transfer.  

In the simplest one-dimensional case, the convection-diffusion transport model can be described by 

equation (1) with initial condition (2) and boundary conditions (3): 

 
  

  
  

  

  
  

   

   
               (1) 

                    (2) 

                                   (3) 

where        is the function of interest (for example, the concentration of the pollutant),   is the spa-

tial coordinate,   is the time,   is the convection velocity,   is the diffusion coefficient,     ,      , 
      are given functions,  ,   are boundaries of the considered segment. 

When solving a wide range of problems in ecology, geophysics, seismology, and other areas, the 

problem of determining (identifying) the convection velocity in the convection-diffusion transport 

model often arises. Depending on the equation under consideration and the boundary conditions, vari-

ous methods can be used to solve this problem. In [3], [4], to find the parameters of equation (1), time 

series analysis methods based on the method of least squares, extended Kalman filter and their combi-

nation are used. 

In this paper, we propose the use of metaheuristic algorithms for numerical optimization to find the 

optimal estimate of a parameter of a discrete linear stochastic model with respect to a given criterion 

of identification quality. As in [4], this model with noisy measurements is constructed from the origi-
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nal model (1)–(3) using a two-layer finite-difference scheme, but unlike [4] it uses a grid not with 

three but with an arbitrary number of nodes on the coordinate   and the conventional, rather than the 

extended Kalman filter.  

The choice of metaheuristic algorithms to optimize a parameter identification criterion is due to the 

fact that deterministic numerical methods applicability is guaranteed under the conditions of conver-

gence theorems [5]. The convergence of numerical methods is influenced by various factors, including 

a good choice of the initial approximation.  

If the initial approximation is not chosen correctly, the exact algorithm for finding the estimates of 

the parameters may diverge, which means that it is impossible to solve the identification problem. 

Metaheuristic algorithms can be used both directly for solving the problem of minimizing the identifi-

cation criterion, and for finding a good initial approximation for exact methods. A similar approach 

was applied by the authors in [6–9] and proved its efficiency. 

2. Discrete linear stochastic model 

We want to move from the model (1)–(3) to a discrete linear stochastic model, whose equations gener-

ally have the following form: 

  
                          

                   
       

  (4) 

where       is the system state vector,     
   is the control vector,     

  is the measurements 

vector, noises       and     
  form independent normally distributed sequences with zero 

mean and covariance matrices        and        respectively, matrices          ,      
    ,          ,          ,          ,           can depend on an unknown pa-

rameter  . 

In computational practice, for the numerical solution of non-stationary problems for convection-

diffusion equations, two- and three-layer finite-difference schemes are most often used. To obtain a 

discrete linear stochastic model, consider in the     plane a regular grid (5) with spatial step    and 

time step   : 

                                    (5) 

Let us denote   
          ,  

       ,           ,            and write down the finite-

difference scheme for (1)–(3): 

 
    
    

 

  
  

  
      

   

   
  

  
       

    
   

   
 

                    
 (6) 

   
                (7) 

   
        

               (8) 

It follows from equation (6) that the value of the required function at the internal node points of the 

   -th time series can be found through its values at the nodal points of the  -th time series as fol-

lows: 

     
           

             
           

    (9) 

where    
   

   
,    

   

   
. Let us write (9) in the form 

     
      

        
      

    (10) 

where                              

The desired discrete linear stochastic model can be represented in the following form: 
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  (12) 

Note that the first equation in model (12) is deterministic, the initial value of the state vector is (7), 

and the boundary conditions (8) act as control parameters. 

Suppose that the diffusion coefficient   and the characteristics of the noise in the measurer are 

known, and the steps of the space-time grid    and    are given, then the unknown parameter of mod-

el (12) to be determined is the convection velocity  , on which coefficients    and    of equation (10) 

and, consequently, matrix   depend. Briefly, the model (12) can be written in the form: 

  
                 
               

       

  (13) 

where    . 

3. Metaheuristic algorithms for parameter identification 

Let us consider the problem of parameter identification of model (13) from noisy measurements data 

for estimating an unknown parameter. The parameter identification problem consists in finding an un-

known parameter   from known input signals   
                   and the output observation 

data   
               in accordance with the chosen identification criterion       

    
    . In this 

case, the problem of estimating an unknown parameter   requires solving the nonlinear programming 

problem with constraints 

                    
    

     (14) 

where        (the domain of  ). 

In this paper, we use metaheuristic algorithms to solve problem (14). Metaheuristic is a high-level 

search strategy for finding solutions, applicable to a wide range of optimization tasks. Metaheuristics 

have the following properties: they are based on fairly simple ideas, for example, imitating biological 

or physical processes, they are problem-independent, practically all of them are nondeterministic. 

Most metaheuristic optimization algorithms can be divided into two large groups according to the 

method of obtaining a solution: trajectory and population-based ones. In trajectory algorithms, the 

process of finding a solution can be considered as a movement between individual solutions of a prob-

lem while in population-based algorithms a group of solutions called population changes in the pro-

cess of finding the solution. 

One of the most popular trajectory algorithms used in solving global optimization problems is the 

simulated annealing (SA) method. A key feature of the method is the use of a control parameter– a 

temperature, which allows controlling the nondeterministic process of solution search. As a rule, the 

temperature decreases during the operation of the algorithm according to a certain law, starting with 
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some initial value. At each iteration of the algorithm, the randomly generated new solution from the 

neighborhood of the current solution is taken with probability 1 if it improves it, and with probability 

less than 1, if worsens, and the probability of making the worst decision decreases with a decreasing 

temperature. The quality of decisions is estimated using a cost function (integer or real). 

Simulated Annealing (SA) 

  1: Solution   InitialSolution() 

  2: BestSolution   Solution  

  3: BestCost   Cost(Solution) 

  4: T   InitialTemperature() 

  5:     

  6: while not StopCondition() do 

  7:        NewSolution   ChooseRandomOf(Neighborhood(Solution)) 

  8:        NewCost   Cost(NewSolution) 

  9:        if NewCost   BestCost then 

10:                BestSolution   NewSolution  

11:                BestCost   NewCost  

12:        end if 

13:        Solution   AcceptWithProbability(Solution, NewSolution, T) 

14:              

15:        T   UpdateTemperature(T, n)  

16: end while 

Output: BestSolution  

The genetic algorithm (GA) is a popular version of the so-called evolutionary optimization algo-

rithms based on the simulation of natural selection processes. In evolutionary algorithms, the quality 

of solutions is estimated using the fitness function, and the main idea of algorithms is that solutions 

with the best values of a given function “survive” in the course of evolution.  

In GA, at each iteration of the evolutionary process, a new population is obtained from the current 

population using one or more genetic operators successively. The most common genetic operators are 

the crossover (recombination) which is used to generate the descendant solutions from the parent solu-

tions and the mutation – an accidental change in the solution. 

Genetic Algorithm (GA) 

  1: Population   InitialPopulation() 

  2: for all     Population do 

  3:        EvaluateFitness(  ) 
  4: end for 

  5: while not StopCondition() do 

  6:        Parents   SelectParents(Population) 

  7:        Offspring   Crossover(Parents) 

  8:        Offspring   Mutation(Offspring) 

  9:        for all     Offspring do   

10:                EvaluateFitness(  ) 
11:         end for 

12:        Population   UpdatePopulation(Population   Offspring) 

13: end while 

14: Solution   ChooseBestOf(Population)   

Output: Solution. 

The algorithms SA and GA are discussed in more detail, for example, in [10]. 
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Since (13) is a discrete linear stochastic model with Gaussian noise, it is advisable to select the 

identification criterion (14) in the form of a negative logarithmic likelihood function as the cost/fitness 

function for implementing metaheuristic algorithms [11] 

          
    

      
  

 
       

 

 
                

        
 
    (15) 

where the residual vector    and its covariance matrix      for a given value of the parameter   in (4) 

are calculated from the known Kalman filter equations [12]:  

A. Time update. 

For         the Kalman filter computes extrapolated estimates      
  for     . They are obtained 

through the temporal update from   to     as 

      
         

          

with    
            and the covariance matrices 

     
             

       

where   
                       

  . 
B. Measurement update. 

For         the Kalman filter computes the so-called filtered (i.e., measurement updated) esti-

mates    
 . They are obtained through the measurement update using    with noise covariance      

 , as 

    
     

    
 
  ,                  

 , 

with filter gain 

  
 
   

          
                       

       

and filtered estimates covariance matrices 

   
    

    
 
      

   

At present, when solving practical problems with the use of a computer, it is preferable to apply 

square-root and UD-implementations that are numerically stable against machine round-off errors in-

stead of the conventional form of the Kalman algorithm [12, Chapter 6]. 

The maximum likelihood method consists in optimizing criterion (15) with respect to the system 

parameter  . It is often used in practice to solve parameter identification problems of discrete linear 

stochastic systems [12, 13]. 

4. Numerical experiments 

Consider the following problem: 

 
  

  
  

  

  
  

   

   
               (16) 

             
  

  
             (17) 

                          (18) 

where        is the concentration of the pollutant in one-dimensional flow, (17) is the initial distribu-

tion of the pollutant and boundary conditions (18) correspond to the case of two absorbing walls. 

The exact solution of (16)–(18) has the form: 

             
 

  
   

  

 
                 (19) 

Suppose that the value of parameter   in equation (16) is known and it is required to determine the 

value of parameter  , provided that noisy measurements from sensors located at nodes of some regular 
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grid are available. Let a grid with 10 nodes (   
 

 
) be given on the    axis, and the time step  

   
   

  
. 

Let    ,    . The plot of the exact solution for this case is shown in figure 1. 

 

Figure 1. The plot of the exact solution. 

To simulate noisy measurements we add random errors (white noise) to the values of the exact so-

lution (19) at the grid nodes. The covariance matrix of the noise is          , where   is the identity 

matrix and    is the known variance. An example of a noisy solution is shown in figure 2. 

 

Figure 2. The plot of the noised solution. 

Figure 3 demonstrates the averaged plot of criterion (15), obtained from the results of 100 experi-

ments. To minimize it, we have used functions simulannealbnd() and ga() from the Global Optimiza-



194 
 

tion Toolbox of the MATLAB system. Numerical experiments were conducted on a hardware-

software platform: Intel Core 2 Quad Q6600 @ 2.40 GHz, 4 Gb RAM, Microsoft Windows 10 Pro 

x64, MATLAB R2017a. 

 

Figure 3. The plot of the identification criterion. 

For each of the algorithms, the corresponding cost/fitness and output functions were written. Basic 

settings of the algorithms are given in table 1. As a stopping criterion for both algorithms, a time limit 

of 5 seconds was used. The search for solutions was carried out on the interval [0; 5], the number of 

steps in time (i.e., the number of time series) is       . 

 

Table 1. SA and GA settings. 

SA GA  

TimeLimit 5 TimeLimit 5 

MaxIter Inf Generations Inf 

MaxFunEvals Inf StallGenLimit Inf 

StallIterLimit Inf PopulationSize 20 

ReannealInterval 100 PopInitRange 0..5 

 

Table 2 shows the results of computational experiments for different values of the noise variance 

  . For each value of   , a series of 100 experiments was conducted and for each series, the following 

values were calculated: mean value of the identified parameter (Mean), mean absolute percentage er-

ror (MAPE) and root mean squared error (RMSE). The obtained results show that, with the selected 

settings, both algorithms allow identifying the convection velocity with an acceptable accuracy. At 

high noise values, the quality of parameter identification is approximately the same for both algo-

rithms, with a low noise level, the simulated annealing method yields smaller MAPE and RMSE er-

rors. 
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Table 2. Experiment results. 

   

SA GA 

Mean MAPE RMSE Mean MAPE RMSE 

0.001 1.9710 2.2439 0.0566 1.9739 4.7195 0.1316 

0.005 1.9786 2.0756 0.0532 1.9937 4.9573 0.1343 

0.01 1.9665 2.3950 0.0660 1.9813 4.8876 0.1274 

0.05 1.9762 2.6874 0.0708 1.9710 4.8828 0.1315 

0.1 1.9662 2.7181 0.0725 1.9985 4.9098 0.1273 

0.5 1.9642 5.0677 0.1290 1.9953 6.4925 0.1869 

1 1.9643 6.9710 0.1739 1.9635 7.0476 0.1750 

5. Conclusion 

This paper demonstrates the practical applicability of metaheuristic algorithms for solving the problem 

of parameter identification in the model of convection-diffusion transport. The convection velocity 

was considered as an unknown parameter of the model. The problem solution was obtained with the 

use of the maximum likelihood method, in which the simulated annealing method and the genetic al-

gorithm were used to numerically minimize the negative logarithmic likelihood function. 

Numerical experiments were conducted in MATLAB. The results obtained make it possible to con-

clude that the application of metaheuristic algorithms is expedient since it allows to obtain acceptable 

estimates of the parameter for different levels of noisy measurements. 

Further research will focus on the construction and software implementation of new exact and hy-

brid algorithms for parameter identification of convection-diffusion transport models and their appli-

cation to real life problems. 
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