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Abstract. The principles of adaptive supervisory control of a linear system are considered. The 

control algorithm assumes an alternation of the stages of plant identification and adjustment of 

the regulator coefficients using artificial Hopfield neural networks. For identification, the plant 

model in the form of a discrete transfer function is used. The input of the neural network 

receives signals from the input and output of the plant and their delayed values, and the outputs 

of the neural network are the coefficients of the model. To determine the weights and 

displacements of a neural network, the Lyapunov function is introduced, which describes the 

energy of the network as a function of the output error of the model. The identification stage 

precedes the step of adjusting the regulator coefficients. Supervisor based on the Hopfield 

neural network uses the obtained estimates of the model parameters, its outputs are the PID-

controller coefficients. To adjust the weights and displacements of the neural network 

supervisor, we also consider the energy function, the minimization of which means the 

convergence of the outputs of the control system and the given reference model.The 

computational experiments performed showed a good quality of the adaptive system operation 

when controlling a linear plant with unknown parameters. The considered algorithms of 

identification and adaptation can be used to control a wide range of linear plants with variable 

parameters. 

1. Introduction 

Neural networks (NN) are an effective tool for solving many technical problems [1], including 

modelling, optimization, classification, recognition, management, forecasting, etc. There are different 

topologies of the NN, but on the basis of the presence of feedback, there are two class: static and 

dynamic NN.  

In practice, static feedforward NN (multi-layer perceptrons) are widely used, which are trained 

using the algorithm of back propagation. These static NN can be converted into dynamic ones by 

supplying the delayed values of the output of the NN to its input. This approach allows solving the 

task of identifying a dynamic plant, considering the accumulated data sets from its input and output 

[2]. In [3, 4], the feedforward NN is used to implement the PID controller. In [5], a feedforward NN 

was used to estimate the delay at the output of an object with a delay. 

The Hopfield NN are dynamic neural networks [6, 7]. The Hopfield NN traditionally used in the 

tasks of organizing associative memory and optimization. The identification with the help of Hopfield 

NN differs in that it allows us to obtain estimates of the parameters of the mathematical model of the 

controlled plant. For example, in [8] the problem of identifying the parameters of a mathematical 

pendulum was considered. In the paper [9], the Hopfield NN with nonlinear activation functions is 

considered to optimize the parameters of the PID controller. The dynamic plant model is described by 
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the equations of state. The parameters of a neural network are calculated as a combination of state 

variables and input signals. It is noted that it is possible to increase the speed of the system and reduce 

the static error in comparison with the traditional control scheme. 

In this paper, we consider the problem of identification and adaptive control of a linear dynamical 

object using the dynamic Hopfield NN. The technique for determining the parameters of the NN based 

on the use of Lyapunov functions is given, which makes it possible to minimize the error of the system 

state. The problem of identification of the model of the object is considered as auxiliary for 

determining the parameters of the regulator, which ensures the closeness of the output of the plant and 

the given reference model. 

2. Hopfield neural network 

The recurrent Hopfield NN it has one layer of neurons, where the outputs of each of them are feedback 

to the inputs of the others (Figure 1, where AN is an artificial neuron, Ii and ui are the displacement and 

output signal of the i-th neuron, wij is the coupling weight i and j neurons). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of the Hopfield neural network. 

The output of the j-th neuron is described by the equations: 
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where φ is the activation function of the neuron. 

Stability of the NN is guaranteed if its parameters are chosen in such a way that there exists a 

Lyapunov function, i.e. a function that would always decrease when the network state changes. The 

form of this function is dictated by a specific task. To justify the fact that a positive-definite function is 

a Lyapunov function, one must prove that its derivative is negative definite. 

Let E(X) be a function positive for any values of the parameters X. The dynamics of the NN should 

be realized in such a way that the function E(X) has a negative derivative. 

     .1,
)()(

,ni
dt

dx

x

XE

dt

XdE i

i





              (2) 

Let the dynamics of NN be determined by the expression: 
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Then it follows from (2) and (3): 
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According to (1), 
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Substituting (6) into (4), we obtain 
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The derivative (7) is always negative if the activation function φ is chosen in such a way that the 

partial derivative is always positive. This condition is ensured for a continuously differentiable 

monotonically increasing function (linear function, hyperbolic tangent, and so on). Thus, condition (3) 

ensures the minimization of E(X) in the course of the Hopfield NN operation. 

3. Identification of a linear dynamic plant 

The task of identification is to determine the structure and parameters of the mathematical model of 

the plant from experimental observations. Let us consider the traditional formulation of the problem of 

parametric identification of a linear dynamical plant. 

At the input of the investigated plant, a certain test action g(t) is applied, the output signal y(t) is the 

reaction of the plant. The error in the output of the model e(t) = y(t) – ym(t) should be minimized by 

adjusting the parameters of the P(t) model, which are the outputs of the neural network (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Neural network identification scheme. 
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A linear dynamic plant can be described by a discrete transfer function of the form: 
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The problem of identification is reduced to the search for unknown coefficients b0, b1, ... bm and a1, 

a2, ... an. 

In practice, the method of least squares and its modifications is often used to solve the problem of 

parametric identification [10]. The use of the Hopfield NN for identification makes it possible to 

abandon analytical calculations in favor of recurrent optimization using experimental data. 

For the sake of simplicity, let us consider a dynamic plant of the second order, for which an 

equation is obtained from (8): 

   1 2 1
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We transform (9) into a difference equation that serves as a model of a linear plant: 

0 1 1 2( ) ( ) ( 1) ... ( ) ( 1) ( 2) ... ( ).m ny k b g k b g k b g k m a y k a y k a y k n              (10) 

where k is the time moment. 

For identification, it is necessary to consider several consecutive moments of time in which (10) is 

fixed.The number of equations must be greater than or equal to the number of model parameters of the 

plant. A system of equations can be associated with an energy function describing a simulation error: 
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Minimization (12) means choosing the values b1, b2 and a1, a2, under which the dynamics of the 

model is closest to the dynamics of the plant. 

It is obvious that E > 0 at all points, except for the equilibrium point, where it is reset. 

The dynamics of the NN must be realized in such a way that the function (11) becomes a Lyapunov 

function. 

.......... 1

1

1

1 dt

db

b

E

dt

db

b

E

dt

da

a

E

dt

da

a

E

dt

dE m

m

n

n 

















  

The number of neurons should correspond to the number of unknown parameters.  

Let ui be the output of the i-th neuron. Then in order for E to be a Lyapunov function, it is 

necessary that conditions (3) are satisfied: 
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After substituting (11) into (13) and performing transformations, one can obtain a set of weights W 

and displacements V of the neural net. 
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4. An example of neural network identification 

Consider the identification of a second-order discrete transfer function: 
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To search for unknown parameters a1, a2, b1, b2, we consider the system of equations: 
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The energy function describing the simulation error can be associated with system (15): 
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The system (13) is transformed to the form: 
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After substituting (16) into (17) and performing the transformations, we obtain a set of weights W 

and displacements V of Hopfield neural network (where g1 = g(i), g2 = g(i – 1), etc.). 
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In Figure 4 and 5 show the results of modeling the identification process at Δt = 0.05 s. The 

transient processes of the plant and the model practically coincide (Figure 4). Estimates of the 

coefficients of the model gradually approach constant values: b1 = 0.375; b2 = 0.1198; a1 = –0.4881; b2 

= –0.3572 (Figure 5).  

In Figures 6 and 7 show the results of identification with an abrupt change in the parameters of the 

plant (at t = 50 sec.). The neural network reacts quickly to the changed modeling conditions. 

 

 

Figure 4. Reaction to the input signal (1) of the plant (2) and model (3). 

 

Figure 5. Changing the estimates of coefficients in the identification process. 
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Figure 6. Switching the plant in the process of identification. 

 

Figure 7. Changing ratings when switching an plant. 
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The algorithm of neural network identification can be used to organize the neural network supervisor 
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controls the parameters of the lower level controller. Suffice it for a long time that the variants of 

implementing the su-primor with the help of fuzzy logic rules are known [11, 12]. The drawback of 

this approach is that the rules are heuristic, which does not guarantee the accuracy and stability of the 

control of the object with variable parameters. 

The supervisor can be implemented on the basis of a feedforward NN [13] or radial-basis NN [14, 

15]. However, in this case, the NN must be previously trained in off-line mode. 

The use of Hopfield NN allows to justify the choice of supervisor parameters by means of the 

Lyapunov function description, which provides minimization of neural network energy in online 

mode. 

The principle of supervisory control is explained in Figure 8, where the neural network identifier 

and the neural network supervisor are implemented on the basis of the Hopfield NN. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Adaptive control system with supervisor. 

The problem of adaptive control assumes the fulfillment of the hypothesis of quasi-stationary - the 

parameters of the plant must change more slowly than the processes of adaptation take place. The 

identification step precedes the step of changing the controller parameters. 

The neural network identifier continuously evaluates the parameters P(t) of the difference model of 

the form (10), obtaining the values of the signals from the input and output of the control plant (u(t) 

and y(t)). The purpose of the neural network supervisor is to adjust the PID controller coefficients k1, 

k2 and k3 so that y(t) ≈ g(t). Instead of the driving influence g(t), the signal of the reference model can 

be used. 
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Subtracting (22) from (21), we obtain 
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Introducing the notation x, y, z for new coefficients, we obtain in the difference form: 
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Let the control plant be described by a transfer function of the form (14). Then to determine the 

unknown coefficients x, y, z, we can consider a system of three equations (where w(t) is the output of 

the reference model): 
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The energy function of the Hopfield NN takes the form: 
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We represent (24) in the form: 
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Then the output of the Hopfield NN neurons describes the system: 
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6. Simulation of the supervisory system 

We will use the model with the coefficients obtained in the example above. To adjust the controller, a 

reference model is set in the form of a transfer function, which corresponds to a weakly oscillatory 

transient process: 

.
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In Figure 11 shows the response of the reference model and the system with the supervisory PID 

controller to the stepped input signal. The output signals are almost identical. 

In Figure 12 shows the change in the PID regulator coefficients during the transient process (for 

given initial values x = y = z = 0.5). 

As the simulation showed, the output of the neural network supervisor responds to a change in the 

level of the input signal with constant estimates of the plant parameters (Figures 13 and 14). 
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Figure 11. Reaction to step input signal (1): PID system (2), reference model (3, dotted line). 

 

Figure 12. Output signals of the neural network supervisor. 
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Figure 13. Reaction to stepwise action of variable amplitude. 

 

Figure 14. Change in estimations of regulator coefficients. 
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Figure 15. Changing the output error. 

Simulation showed that the system with the neural supervisor easily tracks the change in the 

dynamics of the reference model. 

In Figure 16 shows the results of the experiment with a change in the reference model in the form 

of an oscillatory link to the aperiodic link (at t = 40 sec). Transient processes almost coincide. 

In Fig. 17 shows the variation of the regulator coefficients. 

 

 

Figure 16. Reaction of the system with the change of the reference model: 1 - setting action, 2, 3 - 

output of the plant and the etalon model. 
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Figure 17. Output signals of the supervisor when changing the reference model. 

7. Conclusion 

The technique of organization of adaptive supervisory control of a linear plant, considered in the 

article, is based on the use of the Hopfield NN. The number of neurons of this single-layer NN should 

correspond to the number of unknown variables in the problem under consideration. The weights and 

displacements of the Hopfield NN must be chosen in such a way that the outputs of the neurons tend 

to take constant values minimizing some function of the network energy. For the construction of the 

energy function, variants of Lyapunov functions that describe the error in the output of the model 

during identification and the error of the output of the system with respect to the reference model, with 

adaptive control, are considered. 

The advantage of the proposed approach is that the identifier based on the Hopfield NN allows 

continuous evaluation of the model parameters. The adaptation of the controller can be performed 

periodically or in a situation where the deviations of the current estimates exceed a predetermined 

threshold. In addition, the adaptive controller can monitor the variable dynamics of the reference 

model. The examples of modeling presented in the article show a good quality of solving the problems 

of identification and control of the regulator coefficients. A neural network supervisor based on 

Hopfield NN is an alternative to fuzzy supervisors of PID controllers with heuristic tuning rules, as 

well as classical adaptation schemes [16]. 

The computational experiments carried out assumed that the identification stage and the adjustment 

stage of the regulator occur sequentially. The variant of continuous interaction of the NN of 

identification and adaptation NN requires additional investigation. It also requires a study of the ratio 

of the amount of real-time calculations required by the described approach and adaptive algorithms 

based on the recursive least-squares method. 

In general, this approach can be useful in the development of adaptive control systems by a wide 

class of linear dynamic plant with variable parameters. 
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