
Features of the hardware implementation
of real time Hough transform on FPGA

Eleonora Dorofeeva, Danila Nikiforovskii, and Ivan Deyneka

Research Institute of Light-Guided Photonics,
ITMO University, Saint-Petersburg, Russia

{eleonora.dorofeeva,danikiforovskii,igdeyneka}@corp.ifmo.ru

http://sf.ifmo.ru/

Abstract. Hough transform is a widely used computer vision algorithm.
It allows to recognize objects that can be defined by the parametric func-
tion in digital images. In real-time machine vision systems that analyze
video stream from digital cameras the time of processing of a single frame
is extremely important. The hardware implementation of the algorithm
on Field-Programmable Gate Array (FPGA) reduce the processing time
by using parallel computing and quick access to embedded memory. How-
ever, the hardware implementation has a number of features. To achieve
the results, the structure and principles of the FPGA operation have to
well known as well as principles of FPGA interaction with the environ-
ment.

Keywords: FPGA, Hough transform, Intel FPGA, Image processing

1 Introduction

Computer vision algorithms are used in many fields of industry [1]. The most
popular applications of the technology are quality control at the production
stages, face detection and recognition of text or graphical information [2]. Video
analysis systems are installed on fast moving platforms such as quadrocopters,
cars, and trains. Thus, the image processing speed becomes the major parameter.
Usage of an FPGA is an effective mechanism to highspeed image processing [3].

In the work, the FPGA-system is used as the main hardware platform for
solving the processing time issues by performing the parallel computations.
Hough transform is used as the main image analyzing algorithm. Methods of the
algorithm optimisation and features of hardware implementation are described.
The new contribution of this work compared to the previous approaches ([4],
[5]) is the presented VHDL code of implementation of the Hough space, the
described method for real-time circle detection using FPGA and the proposed
method of the algorithm optimisation for a specific task.

2 Algorithm description

Hough transform is a technique, which used to find geometry shapes. The method
involves three main steps [6]. At the first step, the shape is represented by the



2 Features of the real time Hough transform FPGA implementation

formula. For example, the normal form of a straight line that passing through
the point with coordinates (x, y) is equal to:

ρ = x ∗ cos θ + y ∗ sin θ, (1)

where ρ is the distance from the origin to the closest point on the straight line,
and θ is the angle between the x axis and the line connecting the origin with
that closest point.

Fig. 1. Straight lines representation.

At the next step, each point related to the edges of the objects participates
in the voting procedure. During the voting procedure, a voice is passed to the
parameter space at the address corresponding to the current parameters. The
voice may be either 1 or a value that depends on some other parameters.

Fig. 2. Voting procedure representation. a - coordinates space; b - parameters space.

At the last step, the local maxima are defined, the coordinates of which corre-
spond to the parameters of the most probable objects functions in the image.



Real time Hough transform FPGA implementation 3

3 System description

Machine vision systems contain three major elements such as digital camera, a
computer and an output device or a controller of robotic parts of the system [7].
The system prototype that was organized for the work is shown in the Fig. 3.

Fig. 3. The system data-flow scheme.

It contains the next elements:

– D8M camera made by Terasic;
– DE1 SoC board made by Terasic with an FPGA Cyclone V made by Intel

FPGA (prev. Altera) on it;
– VGA monitor.

The stream of frames, each size of 1920 x 1080 pixels, goes from the camera
to the FPGA pins. The sequence of pixels is formed by the Bayer pattern [8]
(Fig. 4). The pipelining of the following calculations maximizes the capacity.

Fig. 4. The Bayer pattern.

The system operates at 65 MHz. A line change and a frame refresh take place
when a horizontal or vertical signal appears. These signals are provided by VGA
standard.

At the first step of the algorithms hardware implementation, the stream from
the camera was converted into the three-row stream. Each row corresponds to a
color from the RGB model. This step is required by the VGA standard for correct
output. The interpolation method is used to complete a set of red, green, and blue
values for each pixel. Registers, which can be described using VHDL (VHSIC
(Very high speed integrated circuits) Hardware Description Language) should
be used to get the information about neighboring pixels. The information about



4 Features of the real time Hough transform FPGA implementation

pixels from the previous row can be obtained by using linear buffers (Fig. 5).
In the work, the issue was solved by using IP-cores that provide access to the
2-ports RAM, and by using the manually written component that was made for
this purpose.

Fig. 5. The linear buffer.

The component implemented as state-machine. In each state, the current value
of pixel intensity is written to one line in RAM and the values of the three
previous lines with addresses X are captured. When the X value reaches the line
length, the state changes and the ”oldest” written line is cleared, and becomes
the line for writing.

The Canny edge detector is used to identify the pixels that belong to the
objects borders [9]. It involves the next steps:

1. Gray-scale the image.
2. Apply Gaussian filter to smooth the image in order to remove the noise.
3. Find the intensity gradients of the image.
4. Apply non-maximum suppression to get rid of spurious response to edge

detection.
5. Apply double threshold to determine potential edges.

In order to gray-scale the image, the information from the Y-channel from the
YCbCr model can be used [10]. It provides the information about pixel intensity
that can be calculated by the next equation:

Y = R ∗ 0.299 +G ∗ 0.587 +B ∗ 0.114, (2)

where R, G and B - values of red green and blue channels.
The coefficients in formula (2) are floating-point numbers. There are IP-

cores, which perform mathematical operations with floating-point numbers, but
usually, they slow down the algorithm because it takes several clock cycles to



Real time Hough transform FPGA implementation 5

calculate. To avoid the usage of floating-point numbers in formula (2), at first,
the coefficients values should be increased several times. Because of this step, the
subsequent rounding does not affect accuracy. After rounding, the mathematical
operations with integers can be performed. When all the operations are done,
the result should be divided by the same number, which it was multiplied by at
the beginning. In the work, the result is obtained by multiplying all the values
by 256 and right-shifting by 8 bits, which is equivalent to dividing by 2 to the
power of 8 (3).

Y =
R ∗ 77 +G ∗ 150 +B ∗ 29

256
. (3)

So the result can be obtained with the same precision but in just one clock cycle.

In the work, the matrix operator that shown in (4) expression is used as the
Gauss filter.

B =
1

16
∗

∣∣∣∣∣∣
1 2 1
2 4 2
1 2 1

∣∣∣∣∣∣ ∗A. (4)

To calculate the new intensity of the pixel in the center, the information from
the last three rows is used. It can be obtained by using line-buffers, which was
described before.

The gradient value and direction are calculated by the next equations:

Gx =

∣∣∣∣∣∣
−1 0 1
−2 0 2
−1 0 1

∣∣∣∣∣∣ ∗A; Gy =

∣∣∣∣∣∣
−1 −2 −1
0 0 0
1 2 1

∣∣∣∣∣∣ ∗A, (5)

where Gx and Gy (gradient values in horizontal and vertical directions) are
integers, and their values are in the range from 0 to 255. In the work, all the
possible variants of the squared Gx and Gy are calculated in advance and placed
as initial values in the M10K memory blocks. During the system operation,
mathematical operations are not used to obtain a specific value of Gx or Gy
squared. The value of gradient is sent as a memory address, and the return
value is a square value.

The value of the gradient direction (θ) is rounded to four main directions (0,
45, 90 and 135 degrees) and can be found using the equation (6):

θ = arctan(
Gy

Gx
). (6)

Again, the usage of trigonometric functions slows down the processing. There-
fore, in the work the M10K memory blocks and pre-calculating values are used
again. The address is the concatenated (Gx|Gy) signal. The value of the memory
cell in this address is a number in the range from 0 to 3 that corresponds to one
of main gradient directions.

The method of memory access used in the work increases the processing
speed compared to the performing of the values calculation at each iteration.



6 Features of the real time Hough transform FPGA implementation

Fig. 6. The gradient directions.

4 Hough space implementation

The hardest part in the work is the implementation of the accumulator that
holds the votes. The access to any cell of the parameter space should be granted
in every iteration. In case of straight line detection, the space is 2-dimensional.
The one dimension is an angle , which in the work is in the range from 0 to 179
in increments of 1. Another dimension is the distance in the range [−a, d], where
a and d are the largest side and the diagonal of the input image in pixels accord-
ingly. In the work, the accumulator (the so-called Hough space) implemented as
180 arrays, each consisting of (a+ d) 10 memory blocks. Thus, the value at the
address that correspond to the current pending distance is incremented in each
of 180 arrays.

The M10K memory blocks were used in this paper to organize constant and
immediate access to all cells of the Hough space. These blocks and instances of
diastase calculating blocks are generated ones. Thus, the values of 180 different
distances for 180 angles for one pixel are calculated per single cycle.

Review of VHDL code:

entity HoughArray is

generic (

X_MAX : natural := 1023;

Y_MAX : natural := 767;

HOUGH_SPACE_SIZE : natural := 180;

PICTURE_SIZE : natural := Y_MAX - HOUGH_SPACE_SIZE

);

port ( ...

clk : in std_logic;

reset : in std_logic;

HS: in std_logic;

VS: in std_logic;

edge_info: in std_logic;

o_hough : out std_logic_vector(9 downto 0)

);

end entity;



Real time Hough transform FPGA implementation 7

architecture rtl of HoughArray is

...

begin

...

gen_block:

for I in 0 to 179 generate

rho_count_inst: rho_count

generic map (

cos => cosarr(I),

sin => sinarr(I)

)

port map (

...

x_std_vec => x_count, -- in

y_std_vec => y_count, -- in

rho => rho(I) -- out

);

hough_ram_inst : hough_ram

port map (

...

data => data_sig(I), -- in

rdaddress => raddr_sig(I), -- in

wraddress => waddr_sig(I), -- in

wren => wren(I), -- in

q => q_sig(I) -- out

);

end generate gen_block;

process (clk, reset)

begin

for I in 0 to 179 loop

if (y_count < HOUGH_SPACE_SIZE) then -- build Hough space

if (q_sig(I) < X_MAX) then -- to avoid inferred latches

data_sig(I) <= q_sig(I) + 1;

else

data_sig(I) <= (others => ’1’);

end if;

raddr_sig(I) <= rho(I);

waddr_sig(I) <= rr_rho(I);

wren(I) <= edge_info;

else -- output Hough space

raddr_sig(I) <= x_count;

waddr_sig(I) <= x_count-2;

data_sig(I) <= (others => ’0’);

if (I = (y_count - PICTURE_SIZE)) then



8 Features of the real time Hough transform FPGA implementation

wren(I) <= ’1’;

else

wren(I) <= ’0’;

end if;

end if;

end loop;

if (rising_edge(clk)) then

rHS <= HS;

if (HS = 0) then

x_count <= 0;

else

x_count <= x_count +1;

end if;

if (rHS = 0 AND HS = 1 ) then

y_count <= y_count+1;

end if;

if (y_count >= PICTURE_SIZE) then

o_hough <= q_sig(y_count-PICTURE_SIZE);

else

o_hough <= (others=>’0’);

end if;

end if;

end rtl;

The space is build only when the y coordinate of the pixel is less than the [the
picture height - 180] value, otherwise the space is displayed.Sine and cosine are
calculated in advance. The certain sine and cosine for a determined angle are
sent to a specific (rho) counting instance as generic numbers. The current value
is used as the read address for Hough space. A read from RAM operation takes
2 clock cycles. The value that has just been read has increased by 1 and sent to
the RAM at the same address.

4.1 Circle detection

In order to consider the Hough space implementation for circle detection, lets
take a look to the circle radius formula, which can be calculated from its normal
form:

r =
√

(x− x0)2 + (y − y0)2, (7)

where (x0, y0) are center point coordinates, (x, y) are current point coordinates.
Therefore, the Hough space should be 3-dimensional. To avoid the 3-dimensional
arrays hardware implementation, circle detection can be performed of one given
radius during one of 60 frames (assuming 60 fps frame rate). Thus, there will
be 60 separated in time 2-dimensional spaces, each of which will have its own
maxima for on specific radius, instead of one 3-dimensional space. The storage of



Real time Hough transform FPGA implementation 9

parameters of found maxima can be easily implemented by any type of memory
elements.

4.2 Advantages and disadvantages

The Hough transform algorithm has established itself as a reliable method for
finding geometric shapes. The hardware implementation of the transform al-
lows to process video in real time. The implemented algorithm is scalable due to
pipeline and parallel computing. Increasing the resolution of the input image will
not affect the speed of image processing. The implemented algorithm is portable
due to custom-made HDL-blocks. There are no third-party IP graphics blocks
used in the work. Thus, the algorithm is not related to a specific hardware. The
only drawback of the Hough transform is exponential calculation time depen-
dence on the parameters number in the formula of the detected form. It could
be seen in the circle detection example. To improve the algorithm, a range and a
step of parameters can be selected based on a specific task. For example, to find
the road border in the picture, only lower part of the image should be processed.
In addition, the diapason of line angles can be restricted, since the road will be
always co-directional to the vehicle direction.

5 Conclusion

In the paper, features of hardware implementation of Hough transform were pre-
sented. Moreover, the machine vision system for real time straight line detection
on Cyclone V FPGA was implemented. The method of implementation of Hough
space for circles detection is considered.

Moreover, potential of the used FPGA allows to make more sophisticated
projects. Completed machine vision system may be used for railway track de-
tection, which necessary for self-driving trains.

Acknowledgments. This work was supported by the Ministry of Science and
Higher Education of the Russian Federation (The unique identifier of the project:
goszadanie No. 8.3134.2017/4.6)

References

1. Forsyth, D.: Computer Vision: A Modern Approach. (2004)
2. Batchelor, B.G., Whelan, P.F.: Intelligent Vision Systems for Industry. (2002)
3. Derzhanovski A.S., Sokolov S.M.: Vision data processing in real time machine vision

using FPGA, http://library.keldysh.ru/preprint.asp?id=2016-126 (2016)
4. Xin Zhou, Yasuaki Ito, and Koji Nakano: An FPGA Implementation of Hough

Transform using DSP blocks and block RAMs, Japan (2013)
5. Viola P., Jones M.J.: Proceedings IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR 2001) // Rapid Object Detection using a Boosted Cascade of
Simple Features. (2001)



10 Features of the real time Hough transform FPGA implementation

6. Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and
Curves in Pictures. (1971)

7. Zollhfer, M., Niegner, M., Izadi, S., Rhemann, C., Zach, C., Fisher, M.: Real-time
Non-rigid Reconstruction using an RGB-D Camera // ACM Transactions on Graph-
ics. (2014)

8. Bayer, E. B.: Color imaging array , US 3,971,065. (1975)
9. Canny, J.: A Computational Approach To Edge Detection. (1986)
10. Wright W.D.: A re-determination of the trichromatic coefficients of the spectral

colours. (1928)


