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Abstract. Nowadays computer modeling area is very popular and mostly 
researches interest in cloud computing in computer modeling rapidly grow-
ing. In scientific world math models with high complexity are continuously 
developed in different areas of applications, that is a cause of this growth. 
In this way our team should quick respond for new user requirements and 
growing of computation complexity for system dynamics models. Previ-
ously software architecture of sdCloud platform was complex and hard to 
maintain and extend. The new architecture based on micro-services infra-
structure and Enterprise Service bus provide flexibility, scalability and 
reliability of computation platform. In this paper we describe all details of 
software architecture that was we built for sdCloud platform to compute 
system dynamics models. The paper paid special attention to the commu-
nication process of services with each other using the Enterprise Service 
Bus and introduce a new term – services responsibilities zone. 
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1 Introduction 

Nowadays computer modeling area is very popular and mostly researches inter-
est in cloud computing in computer modeling rapidly growing. In scientific 
world math models with high complexity are continuously developed in different 
areas of applications, that is a cause of this growth. System dynamics is an 
aspect of systems theory which is an approach to understand the dynamic be-
havior of complex systems. The system dynamic models consist of stocks and 
flows. The stocks in scope of system dynamic represent some real values of our 
world that can be changed in over time. The flows in scope of system dynamic 
represent a function describing stocks values changes. Those simple elements 
allow constructing models of any complexity level. Such models can describe 
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real world processes or systems in required scale for specific research needs. The 
system dynamic models cover many areas of our world including but not limited 
to economic, medicine, social, mechanic and engineering. In scope of system 
dynamics used the system of linear equations that solved by iterative approach 
in required model time space range that defined by researches that investigate 
model behavior. The model solving process is also can be called as model exe-
cution process. When we are talking about execution of a system dynamics 
model, we are assuming a process of sequential computation of model states 
over a given period with the provided modeling step, representing a minimal 
time frame to navigate in modeling results [1]. For example, we can take the 
simple epidemic model, that describe how disease spreads among area popula-
tion, and this model built for answering the next question: “Can disease spreads 
to all population or disease is disappeared and all population will be healthy?” 
and processes of answering to this question called is model execution [1], [2], [3]. 

To execute system dynamic models required specified tools. Nowadays pre-
sented many different tools for researchers. Most of those tools are open source 
and supports different model formats, like xmile, vensim, stella, etc. and each 
tool implemented in its own way with different technologies. For example, looks 
at PySD and SDEverywhere open source libraries [4], [5]. The PySD library uses 
a python environment to handle system dynamic models and execute it; at the 
same time the sdEverywhere library wrote on JavaScript to handle models and 
then use C language to execute models. Meanwhile, we also can use different 
types of computing systems to optimize execution performance, for example we 
can move execution process from regular CPU with x86 architecture to GPU [6] 
or different types of CPU, like an Elbrus with VLIW architecture etc. 

2 Overview of current platform implementation 

The sdCloud – is a cloud platform for working with system dynamics models 
[7], [8]. The key feature of this solution is simple user interface which accessible 
from any modern web browsers. sdCloud allows to users create and execute 
models and then make analytics for given modelling results. 

For the first time sdCloud solution was built on few complex applications: 
Web UI & API, executor service, Python bridge. Communication between those 
parts was implemented by different ways, some parts communicates via DB 
server queue, some parts communicates via HTTP channel; we use a system 
pipelines to direct communication with system processes created by sdEvery-
where library. This approach really is chaotic and is not flexible to add some-
thing new with different technology stack, like a GPU model executor, that 
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wrote on C# and use OpenGL bridge to communicates with GPU on different 
platforms: windows or linux-like. 

 

 
Fig. 1. The scheme of current architecture of sdCloud platform. 

This architecture is complex, hard to maintain and have following issues: 

─ Hard to extend this architecture to add a new tool for model handling; 
─ Hard to scale solution to improve performance by horizontal scaling; 
─ Hard to add new integrations in our platform; 
─ Hard to implement complex solutions related with model and results data 

processing; 
─ Hard to understand code and dependencies between parts of code for new 

developers. 

So, we should change this architecture and solve all issues described above. Our 
development team faced a challenge of finding an approach to build flexible, 
reliable and scalable solution for modelers. We should build an architecture that 
can seamlessly integrate existing tools to work with system dynamics models 
and provide an easy way to add different kinds of hardware to model compute 
in our platform. 

For the beginning we mention following requirements for new architecture 
of cloud platform: 

─ High reliability for whole platform: we should provide a good solution for our 
users with minimal impact for them in case when something goes wrong in 
our internal infrastructure; 

─ Good flexibility of architecture: we should have easy way to add new complex 
features related with model execution and data analysis; 

─ Isolation of each tool with possibility in order to use libraries based on dif-
ferent technology stacks; 
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─ Transparency: understandable code and architecture for every developer in 
project. 

 

 
Fig. 2. Existing tools and technologies that already used by sdCloud platform or pro-

posed to use it in future platform development. 

3 Concept of a new platform architecture 

To solve all described issues and meet requirements presented above, we suggest 
building solution with micro-services architecture. By this architecture each mi-
cro-service communicates with another-ones via Enterprise Service Bus (ESB) 
– RabbitMQ [9]. Enterprise Service Bus – system that provides a communica-
tion between mutually interacting software applications in service-oriented ar-
chitectures (SOA) [10]. Micro-services architecture is a power tool to build flex-
ible and reliable solutions. Each service can build with own way, with different 
code languages and different technologies, but only one thing should be a com-
mon in each service – communication protocol, and for that role we choose a 
cross-platform high-performance and reliable ESB system – RabbitMQ [9], [11], 
[12]. 

Our first step in architecture designing process is extracting global parts with 
specified responsibilities. For now our cloud platform provides the following 
features and functions: 

─ Store a model source code; 
─ Store a compiled versions of user models; 
─ Store model execution results; 
─ Model execution; 
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Previously we talk about that cloud platform should be a reliable, so we should 
also provide some services which should monitor all parts of the system and 
notify our technical engineers to quick resolve any issues. When we talk about 
cloud solutions, we assume that all functions can be used by huge number of 
users. Under users we assume not only peoples, because our system has a public 
API, users in our system can be external applications and services. For example, 
it can be an infrastructure under IoT service which implements continuous mod-
eling processes and monitor system. This application generates a lot of input 
data and load for our computation nodes. So, it was a good to implement special 
tools to auto-scaling our computation nodes. Those tools can optimize load and 
implement load balancing between all existing services by optimal way that can 
reduce delay time between when user starts a model and when results are pro-
vided to a user; also, it can reduce power usage of data center where our plat-
form was hosted. Summarize what was said, we can reveal following common 
parts: 

─ Input-Output (IO) zone; 
─ Tool zone; 
─ Controller zone; 
─ Monitor zone. 

Those common parts of our solution grouped based on responsibilities of ser-
vices, so we can say that it is a responsibility zones, or just zones. Each of 
presented zones can contains not only one micro-service, it can contain many 
different services, but each service should implement only one function that fits 
in determined responsibility zone. 

─ IO – zone of services that works with data storages, like a model results 
persistence storage, model source files storage; 

─ Tools – zone of services which implements a specific feature-tool to work with 
models or model results data, like a PySD to produce model results based on 
user input and model source file; 

─ Controller – zone of services that control all requests to process data, organize 
load-balance, implements data stream routing, security checks and some 
other important staff; 

─ Monitor – zone of services that checks statuses of all connected to cloud 
services and communicates with controller services to reorganize cloud struc-
ture if something wrong.  

The pros of such approach, that it gives to us possibility to deploy services on 
many computation nodes of different types and organize communication 
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between them via ESB, based on standard TCP/IP network stack. It allows to 
us manage each zone separately and implement different algorithms for load 
balancing and recovery based on different data for each zone in order to use 
optimal technics for those purposes. For example, for controller zone we can use 
round-robin algorithm for load-balancing each inner service, because most of 
them tasks which implemented in those services are simple, so this algorithm is 
best for this kind of tasks. However, in tools services we have many kinds of 
tasks where execution time of them depends on various input data, like model 
complexity, type of tools etc. so we should use different way for load balancing 
input jobs from users. With new architecture it can be easy to be done, just 
introduce a new load-balancing service in controller zone to manage jobs for 
tools. Implementation details of algorithm for load balancing user jobs for sys-
tem dynamics tools are beyond the scope of this paper. 

 

 
Fig. 3. The scheme of relationships between service zones and Enterprise Service Bus. 

4 Communication protocol for Enterprise Service 
Bus 

Let’s talk about communication process between zones via ESB. Each service 
in specified zone should be connected to ESB and should can post new messages 
and receive messages from them that can be handled by this service. Because 
most of our processes are time consuming, so we can’t use synchronous request-
response scheme of communication. For example, model execution process can 
take in average 5 minutes for medium complexity models and configurations, 
and for huge complexity models it can take time in 1 hour or more… However, 
at the same time we should have opportunity to handle synchronous requests, 
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like taking a status of execution process. For clarifying this process, we should 
reflect this kind of communications on protocol level. For that purposes we 
choose a CQRS (command-query responsibilities segregation) or CQS (com-
mand-query separation) principle [13]. This principle introduces three basic 
terms in communication protocol:  

1. Command – asynchronous action, that should be performed by target service, 
and source service don’t know when this action was completed. Commands 
can’t return any results data, but can generate new commands, queries and 
events; 

2. Query – synchronous method, that should be executed immediately and pro-
vides results data as soon as possible. Queries can’t generate new commands 
or events but can use other queries to take an additional information from 
another services; 

3. Event – immutable data item, that generated by commands to notify services 
about command progress and providing an additional information about that. 

The next key question of communication process – how messages should be 
routed? The RabbitMQ implements a simple, but very powerful message man-
agement. We can define queues and exchanges. Services can post messages in 
queues and exchanges and in the same time can listen only queues for new 
messages. Most important thing for ESB – bindings for exchanges. This feature 
provides messages routing from queues to specified exchange or from exchange 
to any queue based on route keys. This approach provides to us flexible way for 
message management. Another key feature of RabbitMQ – manage all ESB 
infrastructure at real time. We can create any exchanges, queues and bindings 
on the fly when RabbitMQ cluster already ran and already has many consumers. 
We can use this feature for manage our cloud platform environment. 

In our architecture we plan to use an auto-configurable system. Each micro-
service in our architecture can have few input queues and few output exchanges. 
Information about that should be written in specified scheme file and provided 
for routing-controller service. This scheme provided to this service via ESB. 
These scheme file also contains information about type of commands and events 
that service can handle. 

Our architecture intends few global queues for providing a generic bus for 
providing public messages like events and commands. It allows to use a common 
way to publish new events and commands and configure a correct routing of 
messages to required services.  



8 

For example, looks on simple schema files for two simple services: the first – 
model executor, implemented in tool zone; and the second one – time frame 
persistent service, implemented in IO zone. 

{ 'service': 'sdcloud.tool.xmileexecutor', 
 'type': 'tool', 
 'input': [ 
  'sdcloud:model:xmile', 
  'sdcloud:model:langc' 
 ], 
 'output': [ 
  'sdcloud:timeframe', 
  'sdcloud:model:langc' 
 ], 
 'commands': [ 
  'command:sdcloud-execute-xmile', 
  'command:sdcloud-execution-stop' 
 ] } 
{ 'service': 'sdcloud.io.timeframe-saver', 
 'type': 'io:output', 
 'input': [ 
  'sdcloud:timeframe' 
 ]} 

This schema file provides information about service, which commands and 
events can be handled by this service and provides information about which 
data can be consumed and generated by this service. For example, the executor 
service consumes source code of system dynamics model files or already 
transpiled versions of them into C language code. Also, this service provides an 
output data represented as model results time frames. Based on this information 
we can manage our services and route all required information between services 
in easiest way. 

The next key question is how to organize synchronous requests for data re-
trieving? We have two ways to do that. One of them – use HTTP based API 
in required services. By this approach we can use already implemented protocol 
for Request-Response communication between services. Also, we can use various 
libraries to make our requests between services in easy way. However, we should 
implement a request routing between services in another way. This way is not 
flexible and non-generic, it introduces new technology for communication and 
ignore whole ESB infrastructure that already solve all communication issues 
(message routing). So, let’s look on the second way how we can implement a 
Request-Response communication process via ESB. Require introducing a new 
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special message types which should contain information about sender and mes-
sage identifier, then just place it in special queue. For that approach we should 
introduce a new queue for each service – “responses”, a new global exchange 
“requests” which implements a simple routing rules between services. We should 
introduce two types of route-key identifiers for implementing a best routing: 

─ Service Pool Identifier – represents an identifier for pool of service instances, 
f.ex.: “sdcloud:tool:xmileexecutor”; 

─ Service Instance Identifier – represents an identifier of specific instance of 
service, f.ex.: “sdcloud:tool:xmileexecutor:af8fe3462”. 

When request message will be sending by pool identifier, then message route to 
least loaded service instance. The response message will contain identifier of 
responded service instance, so sender service can continue communication pro-
cess with that service instance or send other messages again with pool identifier. 

To organize correct identifying of request-response pair require to introduce 
a unique message identifier. The simplest way to done that – use GUID (Global 
Unique Identifier). This identifier should be generated on sender side. 

Sum up, we can reach our goals using ESB: flexibility – we can introduce 
new services with different technology stacks, only with one common part which 
is ESB communication protocol; reliability – ESB implementation by Rab-
bitMQ is high reliable solution, which supports clustering and message persist-
ing; scalability – we can run our services with many copies and ESB route all 
tasks between them with build-in load-balancing algorithm. 

5 Responsibility zones 

Responsibility zones means a group of micro services that responds only for one 
global feature, like IO or tool. Every responsibility zone can be managed sepa-
rately. 

5.1 Input-Output zone 

Input-Output (IO) responsibility zone is a group of micro services which imple-
ments features related with data persisting. In our platform we need to store 
various types of data that generated by tools and users. Basically, we have two 
key data kinds: files and times frames. File storage used to store source code of 
system dynamics models which uploading in our platform by users. Also, we 
use this storage to store artifacts which generating by our tools. For example, 
PySD tool generates a transpiled to python version of model source code. Time 
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frames – part of model execution results data, for optimal store this kind of 
data we use specialized data base, that calls as Time Series DB. For each kind 
of data, we implement a separate service 

5.2 Tool zone 

The following responsibility zone is complex – Tool responsibility zone. This 
zone implements key features of our cloud platform, for example model execu-
tion. This zone has high complexity because integrate many different tools based 
on different technologies. All those tools form our cloud platform for system 
dynamic researchers. Because we can host every tool separately, we can deploy 
services on required platforms that meets the requirements of those tool config-
uration. For example, for PySD service we should provide platform with already 
installed python environment. In the feature we can use isolated containers for 
each tool. When we talk about isolated containers, we assume using of a Docker 
container. Using containers allows to us easiest way to deploy tools on new 
platforms and makes a copy of services to improve reliability. 

 
Fig. 4. The scheme of tool services dependencies upon technologies and platform types 
(green boxes – services, connected to ESB; blue boxes – technologies requirements for 

tool; red boxes – platform type requirement; white boxes – tools). 

With new architecture we can add a new tool in our cloud platform with mini-
mal effort. For that we should make a platform or container with required con-
figurations and implement a specified wrapper. This wrapper should provide 
communication between ESB and tool via our protocol. 

5.3 Controller zone 

The controller zone – is a specified zone that should integrate all services from 
tool and IO zones between themselves. Controller zone composed few common 
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services. The heart of this zone and whole cloud platform is a Job Routing 
service. Job Routing service should know information about all ran services in 
our platform and configure ESB in runtime to organize correct routing of all 
messages. To harvest information about all new services used another service – 
Service Discovery service. This service lookup our infrastructure to find new 
services and receive from them configuration schemas, then this information 
transferred to Job Routing service via ESB. 

 
Fig. 5. The scheme of services which used in controller zone. 

Additionally, we can add new services in controller zone to improve our infra-
structure management, performance, etc. For example, we can implement the 
Node Management service which have control to startup and shutdown compu-
tation nodes if our platform has low load. It can lead to reducing of data center 
energy consumption. 

When we implement the Load Balancing service, we can improve our perfor-
mance by optimal task scheduling between tool instances. Together with Node 
Management service we can startup new nodes and rebalance all load between 
active computation nodes. As a result, waiting time for execution results re-
duced for our users. 

5.4 Monitor zone 

The monitor responsibility zone – group of services which should check all ser-
vices from all zones in our platform. By monitor we assume continuous checks 
of service status. We should monitor following data for each service: 

─ CPU usage; 
─ Memory usage; 
─ Disk usage; 
─ Health check response time. 
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Fig. 6. The scheme of communication process between monitor services and other ser-

vices in our platform. 

Monitor zone structure and communication process looks different in compare 
with other zones. This relates with different kind of tasks that should be solved 
by those services. Monitor services should be deployed on each computation 
nodes separately and provide information about critical events via ESB. The 
health check request should be implemented via ESB. This way allows to us 
check how communication are works between monitoring service and ESB. This 
check should be performed in regular way, for example every 15 seconds. If we 
found some issues, service should notify technical engineers about it. For that 
purposes service send specified command to Reporting service which send noti-
fication. 

6 Conclusion 

Nowadays computer modeling area is very popular and mostly researches inter-
est in cloud computing in computer modeling rapidly growing. In scientific 
world math models with high complexity are continuously developed in different 
areas of applications, that is a cause of this growth. In this way our team should 
quick respond for new user requirements and growing of computation complex-
ity for system dynamics models. Previously software architecture of sdCloud 
platform was complex and hard to maintain and extend. The new architecture 
based on micro-services infrastructure and Enterprise Service bus provide flex-
ibility, scalability and reliability of computation platform. Previously we don’t 
have a common way to introduce a new tools and integrations that used differ-
ent technologies. For now, we have a common way for that purposes and this 



13 

way provide to us use these technologies in isolated environments. Grouping 
services by responsibilities makes internal processes transparent and under-
standable. With new software architecture we reduce time of feature delivery 
for our users and increase performance and reliability of our platform by starting 
services with multiple instances. 
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