
The problem of physically based rendering in
the cloud computing system

Dmitry Afonkin and Dmitry Zhdanov

ITMO University, St. Petersburg, Russia
daafonkin@corp.ifmo.ru, ddzhdanov@corp.ifmo.ru

Abstract. The objective of this investigation is the possibility of build-
ing a model of physically based rendering in a cloud computing system.
Analyzing various algorithms for rendering process, and various ways to
construct a distributed rendering system. There is an investigation of
reaching cloud computing properties as high availability, fault tolerance,
auto scaling, and flexibility in rendering domain. This paper describes
various solutions of the problems of construction with the use of ren-
dering algorithms in distribution context. The paper opens up possible
ways to build a distributed rendering system and directions for future
research.

Keywords: Physically based rendering, Distributed rendering, Cloud
computing system, Distributed system.

1 Introduction

The cloud compute technology is a method of reaching high quality rendering
system. The purpose is not related to the theory of quality and other formaliza-
tion of computing software characteristics. High quality is a useful for end user
process these days. The physically plausible 3D graphics has been in demand for
the last years. Various fields use photo-realistic graphics for the solutions. For
example, rendering of virtual furniture for demonstrations goals [1], rendering
car paint [2], medical anatomic images [3] and also entertainment as game graph-
ics [4], virtual and additional reality, cinema when computer-generated imagery
is often used. The main method for reaching photo-realistic images is a physical
based rendering. The method is consisting of complex processes as geometry
computations, texturing and shading. The resource demands are depending on
scale of 3D scene. The big scene for the cartoon or cinema cant render on one
computer, except a supercomputer [5]. The problem to get 3D realistic image for
3D scene, is solved by a render farm [6]. The solution is related to distributed
network renderer. A clear concept of render farm doesnt have a modern prop-
erty of distributed system such as high availability, fault tolerance, flexibility
for end-user process and auto-scale. The problems are from the actual rendering
process. I solved these tasks for constructing SaaS system that is unified with
collaboration tool for corporations, and decided these methods to allow to build



2 Dmitry Afonkin and Dmitry Zhdanov

the modern high quality rendering system. Mathematical and engineering expe-
rience will enable to construct, consisting of predict and low-cost system for end
user. The solution of the problem of distributed cloud rendering that consists
of constructing of formal computation model and researches different rendering
algorithms in that model, is to create a flexible and configurable distributed sys-
tem. This provides new opportunities for rendering big scenes. The first one is,
when rendering a big scene. This term doesnt have a formal definition. On this
paper, a big scene is an object that occupies more than half of the computing
resources of a host; as a result, it cannot be rendered on a single host. An ex-
ample of such a scene is the city of San Fransokyo from the cartoon Big Hero 6.
(Fig. 1 shows scene from cartoon).

Fig. 1. The city San Fransokyo from Disney cartoon Big Hero 6.

The city of San Fransokyo is illuminated by more than 216,000 street lights
and it has 83,000 procedural-built buildings with an equal number of street
props and trees. On this paper, some algorithms are considered from the render
system for a big scene from such cartoon, Big Hero 6. Such system was developed
by R&D, a department of Disney company, that shows many methods for out-
core rendering. The system is monolith in-house solution and doesnt have cloud
properties by design. Such characteristics as flexibility, reliability, availability are
needed for efficiency of rendering a big scene for science and production tasks.
It enables to construct end-user abstraction as SaaS or PaaS. The big problem
is on how to construct computational model with such property for physical-
based rendering pipeline. The paper contains review of existing experience and
suggested novel methods, and directions for future researchers.

2 Render pipelines

There are three main rendering pipelines. A rasterized rendering pipeline, a ray
tracing pipeline, and a hybrid pipeline.



The problem of physically based rendering in the cloud computing system 3

2.1 Rasterization-based rendering

The first pipeline defines rasterization as an image synthesis system. The place
of this pipeline is between the processing of primitives and the processing of
fragments (in Figure 2, the rendering pipeline is based on rasterization). Raster-
ization is the projection and processing of simple geometric primitives, mainly
given in the form of a triangular grid on a fragment of a raster screen. A fragment
is a part of the image obtained as a result of rasterization of the primitive, and
might not be an element of the light calculation. The method of rasterization
is most effective for constructing simple images, but its a disadvantage in the
impossibility of correctly calculating the indirect illumination. Rasterization is
not a physically based solution and is usually used in the production of simple
video games. It is usually not used to create cartoons and special effects in the
film industry, and, especially for physically correct calculations. Therefore, the
rendering pipeline, based on the principles of rasterization, does not meet the
requirements.

Fig. 2. rasterization-based rendering pipeline

2.2 Ray tracing-based pipeline

It is known that the architecture of a distributed rendering system places high
demands on the efficiency and correctness of modeling. Therefore, the most uni-
versal methods of forming photorealistic images are the methods based on ray
tracing. The methods have their advantages and disadvantages. The simplest
variation of the ray tracing method is based on the approach of visualizing
sources of primary and secondary scene brightness, i.e. ray tracing (or visualiza-
tion paths) from the observer’s eye to the geometric objects of the scene (Fig.
3. shows the main algorithm for backward ray tracing) [1]. The backward ray
tracing algorithm sends rays from the observer’s eye through the pixels of the
screen into the scene. When the ray intersects with the first element of the scene,
the brightness of its direct illumination is calculated. Brightness is depends on
the material of the object wherein the ray is intersected and can divide the ray
into several rays, for example, a reflection ray and a refraction ray. This pro-
cess will continue until the specified depth of ray tracing is reached, it will not
be absorbed on the object of the scene, or it will not go beyond the limits of
the scene. This algorithm does not distinguish between how the beam interacts
with the diffuse and specular objects of the scene and is sometimes called naive
ray tracing. Ray tracing is a very resource-intensive procedure. For methods of
backward ray tracing, time costs can be represented as O (whn), when n is the



4 Dmitry Afonkin and Dmitry Zhdanov

number of objects in the scene, w and h is the screen resolution in width and
height. There are many methods for optimizing ray tracing, such as adaptive
control of the depth of the ray path, accelerating the search for the first ray
intersection with the surface, linking objects, linking the hierarchy, and spatial
consistency [1]. However, this optimization can also be used for other methods
of radiation rendering. In addition, rendering that supports complex optical ef-
fects may be ineffective. For example, rendering scenes with objects containing
complex patterns of scattering, such as ”glossy” light scattering, polarization,
fluorescence, subsurface and volumetric light scattering.

Fig. 3. Basic Ray Tracing algorithm

Another method - the path tracing method - is the generalized ray tracing,
which is closest to the physical laws. Rays are traced until they are completely
absorbed or leave the stage. In addition, for each scattering event, the direct
brightness is calculated, which allows to significantly increase the overall render-
ing efficiency. However, the effectiveness of this method is not always optimal in
scenes with complex, for example, caustic lighting and in the presence of a large
number of primary light sources.

The bidirectional ray tracing method combines two methods: path tracing
and Forward Monte Carlo Ray Tracing methods. In the first case, the trace
comes from the eye of the observer, and in the second case from the light source.
By connecting the two paths with shadow rays on the diffuse surfaces of the



The problem of physically based rendering in the cloud computing system 5

scenes, it is possible to estimate the brightness of the secondary illumination
for the screen point for which the ray was emitted from the observer. The main
problem of this method is the calculation of caustic lighting and the correspond-
ing caustic brightness, since this method is based on the presence of at least two
diffuse events on the paths of the direct and reverse rays. The main advantage of
this method is its unbiased in assessing the brightness of images of screen dots.
The method of photon maps is a fairly simple and effective method of photo-
realistic visualization. Its main disadvantage is a possible bias in the estimate of
the average brightness of the image point. The main idea of this method is to
build an irradiance map (photon map) by tracing photons from a light source and
using the resulting map to calculate the brightness of the indirect and caustic
lighting. When the ray crosses the photon map element, the brightness is calcu-
lated, which accumulates at the corresponding points of the image [4]. This is a
universal method that allows one to physically correctly estimate the brightness
of all components of the illumination, and its one disadvantage is the presence
of a bias of the obtained brightness estimate. The presence of bias can adversely
affect the initial stages of calculations, however, with long-term modeling using
an adaptive photon map, the effect of bias is usually not manifested. On the
other hand, it must be remembered that the visualization of the caustic effect
can be effectively implemented only in the photon map method. The Metropolis
method is an optimized physical simulation method for handling lighting. This
method is based on the mutation of a single ray distribution, as in the Metropolis
method in computational physics. The method consists of two stages. The first
is warming up, which can calculate the distribution of rays (paths) for a future
mutation. Various methods can be used for calculations, such as bidirectional
ray tracing or photon mapping methods. The next steps are to generate distri-
butions around the sources of local brightness in the scene in accordance with
the Metropolis algorithm. Usually, the first step takes a short time with respect
to the entire rendering time. The main element of the algorithm is the ray path
mutation strategy. It is responsible for the mutations that will determine the
overall computational efficiency. This method is universal and unbiased [3]. Of
course, there are many modifications of considered methods such as importance
sampling techniques and progressive techniques. They allow you to calculate
the time and improve the quality of the synthesized image. In conclusion, the
study should emphasize the Metropolis method, which can significantly improve
the efficiency of image formation for a complex scene, with a large number of
light sources, and objects with complex optical properties, creating effects, such
as contact shadows, caustics from curvilinear mirror bodies, and secondary il-
lumination from small scene objects size. For example, the light reflection of
white tiles under the door and forming a bright strip along the back of the floor.
In some cases, the Metropolis method provides better convergence in time and
quality of rendering than most classical methods. However, methods based on
the calculation and use of photon maps also meet the requirements of physically
correct rendering and in most cases, make it possible to pipeline better the effect
of caustic lighting. Errors caused by the bias of the photon mapping method are



6 Dmitry Afonkin and Dmitry Zhdanov

in most cases not critical and do not violate the correctness of the calculations.
For a more accurate assessment of the suitability of the considered methods, it
is necessary to conduct a study of their performance on a distributed pipeline
[3].

2.3 Hybrid pipeline

The hybrid pipeline combines two methods: rasterization and ray tracing. This
allows you to improve graphics in real time and to add additional visual effects
obtained by tracing a small number of rays. An example of this approach is to
use rasterization to calculate direct illumination, that is, for the first generation
of the rays. The small amount of traced rays affects the quality of the final image
and cannot provide the physically correct modeling needed for filmmaking when
3D-scene images are built for weeks (for a small movie plot) on supercomputers,
as what Disney has done. In conclusion, we can say that at the moment only the
pipeline, built on the basis of ray tracing, allows us to solve the problems under
consideration.

3 Limitation classic distributed network pipeline

On this paper, classic distributed network pipeline means render farm. Such
clean concept of network render architecture doesnt have such cloud property as
SaaS or PaaS system for reliable and available rendering of big scene. The main
questions here are related to fault tolerance, scaling, and configurable pipeline
for rendering big scene. System needs to work after failure more than half of
system resources and can full recovering process. Its important for rendering of
big scene when computation time takes weeks. Scaling is about dynamic recon-
figuration pipeline. To make it faster, simple scaling of resources is the solution
and this wont restart the whole pipeline. onfigurable pipeline is important for
economic profit. It about the ratio of cost to time and quality. The different task
as cartoon or simulation for scientific research have different requirements and
different cost with time. The next part reviews of ways to go out from distributed
network pipeline limitations and solve considered problems. The first step for so-
lution is decomposition of the system where the whole pipeline is on one host.
The unit of decomposition is micro-service. Its a small program module that
is independent and autonomous. Such module can replace any other module of
corresponding class. Also, it supports horizontal scaling through increase count
of micro-service. There are three main class of modules: pre-processing micro-
service, ray tracing processing micro-service and post-processing microservice.
Pre-processing is consisted of decomposition of scene on voxels and initialization
of pipeline. Decomposition allows to distribute pipeline on micro-service, when
one service per voxel. Algorithms of voxelization are many. One of corresponding
methods is binary space partitioning. This is a method for recursively subdivid-
ing a space into voxels. Its process are continuing while voxels has big size for
render on one micro-service. As a result, there is hierarchy of objects for ray



The problem of physically based rendering in the cloud computing system 7

tracing processing. Each voxel has type as empty voxel for part of scene without
object. It optimizes processing. Ray tracing processing includes one of methods
for lighting processing like photon mapping or metropolis light transport. That
service has unified interface and there is no meaning concrete method for tracing.
Each service can send to other services batch of rays for processing. The pro-
cess is called streaming. It is the key process for rendering pipeline. It enables
the process of out-of-core scene also. The problem of fault tolerance is solved
by replication of produced data. Produced data is stored to database server for
reliable. When a database server is breaking, one of replica become to main and
continuing processing (Fig 4. shows big picture of system).

Fig. 4. Bit picture of system

That architecture pattern is called service mesh. Post-processing are forming
image, estimate accuracy, construct predictions, doing filtering, and compressing
for output artifacts. If that is cartoon then combining. The main issue here is
the process of big data output to send an image and cartoon and video to user.
There is distributed filtering and processing for solving. As considered important
process is streaming between ray tracing services. In the next section reviews
reliable solution.



8 Dmitry Afonkin and Dmitry Zhdanov

4 Reliable out-of-core streaming

The worst case of rendering is when a scene needs more than one host. To
do this, there are many methods as out-of-core geometry and out-of-core ray
tracing or out-of-core texturing. In engineering, the method is usually making a
stream of data when the data is too big. To reach cloud property, it is necessary
to make flexibility, reliability, availability and scaling stream. The problem is
solved in a system of big data streaming called Apache Kafka. That system that
is a queue solved problems of reliable distributed streaming. It allows transmit
a big data through network in reliable and scaling way. Usually Kafka used in
pipeline for big data processing (Fig 5. shows common big data pipeline). That

Fig. 5. Common big data pipeline

experience actual for distributed rendering system starting from persistent layer
to streaming and processing. For persistence layer, there are variants such as
Apache Ignite, PostgreSQL and Apache Cassandra. The estimation of efficiency
on these systems in distributed rendering pipeline, is a separate subject for future
researches.

Constructed computational model with service mesh pattern enables to esti-
mate various algorithms of various parts of the pipeline. Distributed architecture
of system enables to replace any algorithm thus the system will evaluate on time.

5 Conclusion

A study was conducted to investigate other possible ways of organizing cloud
computing with distributed processing of the renderer, and the problem of sep-
arating a large process between components of a cloud distributed system was
also considered. The study showed that the cloud rendering system was being
developed will allow solving complex computational problems related to the as-
sessment of visual discomfort caused by the mismatch between the vergence
and the accommodation of human vision. With the help of the developed high-
performance computing system, it will be possible to perform time-consuming
and resource-intensive calculations necessary for synthesizing images generated
by virtual prototypes of the human vision system and virtual and mixed reality
systems, and for assessing the consistency of vergence and accommodation of
human vision in the resulting images.



The problem of physically based rendering in the cloud computing system 9

6 Acknowledgements

This work was partially funded by the RFBR grant No. 18-08-01484.

References

1. Photo-realistic Rendering of Metallic Car Paint from Image-Based Measurements,
Rump M., Mller G., Sarlette R., Koch D. and Klein R., Institute for Computer
Science II, University of Bonn (2008)

2. Shaping the Future through Innovations From Medical Imaging to Precision
Medicine. Comaniciu D., Engel K., Georgesc B., Mans T.,(2016).

3. Photorealism - the future of video game visuals. Stuart K. URL:
https://www.theguardian.com/technology/2015/feb/12/future-of-video-gaming-
visuals-nvidia-rendering(2012)

4. Disney rendered its new animated film on a 55,000-core supercomputer. Volpe J.
URL: https://www.engadget.com/2014/10/18/disney-big-hero-6(2014).

5. Entertainment Computing - ICEC 2009, 8th International Conference, Paris,
France, September 3-5, Yao J., Pan Z., Zhang H. 2009. Proceedings (pp.264-269) A
Distributed Render Farm System for Animation Production(2009).

6. Antonio H., Martinez V.: Accelerating algorithms for Ray Tracing Subsequences.J.
Mol. Biol. 147, 195197(1981)

7. Veach E. and Guibas L. J. Metropolis light transport. Proceedings of SIGGRAPH
97, Computer Graphics, Vol. 31, No. 4, p.p. 6576(1997).


