CEUR-WS.org/Vol-2578/BigVisll.pdf

On Measuring Popularity Bias in Collaborative Filtering Data

Rodrigo Borges
rodrigo.borges@tuni.fi
Tampere University
Tampere, Finland

ABSTRACT

The effect of having few data items responsible for the majority of
ratings in a Collaborative Filtering recommendation, and the com-
plement of having majority of items responsible for few ratings
given by the users, are usually referred as popularity bias. The
effect is known as reflecting the preference of users for popular
items, but also as a consequence of methods and metrics normally
applied by these systems. Variational Autoencoders (VAE) are
considered today the state-of-the-art for collaborative filtering
recommenders, and can handle big and sparse data entries with
robustness and high accuracy. A methodology is proposed here
for characterizing the popularity bias in Movielens and Netflix
datasets, and when applying VAE for generating recommenda-
tions based on them. As a first step, the long tail model is applied
for segmenting items and users in three different classes (Short
Head, Medium Tail and Long Tail), depending on the proportion
of interactions they are associated with. In addition, a real recom-
mendation scenario is presented for measuring the proportion
of unpopular items appearing among the suggestions provided
by VAE. We consider characterizing the popularity in details as
a very first step for providing recommenders with the desired
serendipity effect, and expanding the knowledge of these systems
about new and unpopular items with few ratings.

KEYWORDS

Recommendations; Bias; Collaborative filtering; Variational Au-
toencoders

1 INTRODUCTION

A huge amount of data is produced, converted to digital format
and published online each day, from scientific articles to potential
romantic partners information. Nevertheless, the amount of time
users have available to spend browsing in platforms is severely
limited if compared to the size of most of these catalogs. This
motivated the development of recommender systems (RS), pro-
posed for presenting to users a subset of items he/she will most
likely react positively.

The most popular approach for implementing RS is called col-
laborative filtering (CF), and relies in a premise that users who
interacted with items similarly in the past (e.g., bought many
common books) are similar to each other. Once they shared pre-
vious decisions, they are assumed as maintaining their behavior
and sharing also future ones. CF solutions explore this assump-
tion suggesting to each user the items his/her neighbors, i.e.,
users with similar behavior, consumed, but that he/she has not
had contacted yet.

Let’s assume a scenario in which a recommender operates
through an algorithm trained according to an error-based metric
(as most of them really do) [3]. By error-based metric, we mean

© 2020 Copyright for this paper by its author(s). Published in the Workshop Proceed-
ings of the EDBT/ICDT 2020 Joint Conference (March 30-April 2, 2020, Copenhagen,
Denmark) on CEUR-WS.org. Use permitted under Creative Commons License At-
tribution 4.0 International (CC BY 4.0)

Kostas Stefanidis
konstantinos.stefanidis@tuni.fi
Tampere University
Tampere, Finland

that its success is measured by the number of right guesses it
makes in an separated part of the data (test set) after adjusting
its weights. Let’s assume that after a big number of rounds of
recommendations, 10% of the available items were responsible for
more than 30% of users interactions registered by the platform.
In its next train procedure, the algorithm will try to adjust its
parameters to maximize its overall accuracy, which will certainly
account mostly for those 10% items than for unpopular ones
responsible, for example, for 0.5% of the play counts. We imagine
this happening successively, and in each round the model is more
adjusted according to popular items, and unaware of a great slice
of items that could potentially found their niches of consumption.

We assume the popularity bias effect as a mixture of unbal-
anced preferences authentically expressed by the users, and a side
effect of algorithms and metrics applied in the current systems.
Apart from that, suggesting unpopular items has the desired
effect of serendipity (providing users with novelty), and also ex-
pand the knowledge of the system about unpopular items with
very sparse rating information [21].

We propose a methodology for identifying and retrieving the
bias contained in collaborative filtering popular datasets. Interac-
tions between user and items composing Movielens and Netflix
datasets were represented as static data for identifying popularity.
They were ordered by the number of occurrences and segmented
in Short Head, Medium Tail and Long Tail. First gathered by
items and then by users.

Variational Autoencoder (VAE) is a dimensionality reduction
technique considered today as the state-of-the-art for the task of
CF [15, 18]. It represents user interaction as normal distributions
in a latent space, with great power of predicting unseen item
ratings. We are here interested in tracking how prone to bias
this solution is. We conduct standard procedures for training
and testing it, and measure the proportion of each popularity
categories presented in the results.

The rest of the paper is structured as follows. In Section 2, we
present a detailed analysis of both datasets focusing on popularity
bias. In Section 3, we provide a metric for retrieving how users are
prone to each class of items, named Mainstreaminess. In Section 4,
we simulate a real scenario of recommendations for checking
how biased the state-of-the-art collaborative filtering approach
is. We conclude and point our future works in Section 6.

2 MEASURING POPULARITY BIAS

We assume here the popularity bias effect as a proxy of having few
data items responsible for the majority of ratings in a dataset, and
the complementary effect of having majority of items responsible
for very few ratings given by the users.

In order to demonstrate the effect of popularity bias in a real
world scenario, we selected two datasets widely used in recom-
mender systems research field, both describing movies consump-
tion: the first one is provided by Movielens!, and the second one
by Netflix [4]. A summary of the characteristics of the datasets

Uhttps://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/

(events?, users, items and sparsity) is presented in the first 5
columns of Table 1.

We follow demonstrating the bias effect in the datasets by
applying the well known long tail model [17], in which items are
ordered according to the number of events associated to them.
The main point here is to visualize how events are concentrated
in few popular items, entitled short head (SH), and how the re-
maining events are spread over the rest of them, known as long
tail (LT). The long tail items can be even separated in two parts
considering an intermediate proportion of them between popu-
lar, called medium tail (MT), and unpopular items. The events
distribution is then segmented in three regions according to [1],
who suggests 20% and 80% as the thresholds between SH and MT,
and between MT and LT, respectively.

It is important to notice that the popularity bias can be ad-
dressed from two different perspectives, when considering items
or users as responsible for the majority of samples. We conduct
both analysis as a matter of comparison.

2.1 Item Bias

We start by applying the long tail model to each dataset by or-
dering items according to number of events associated to them,
as presented in Figure 1. It is possible to see the decaying effect
when moving from popular items to unpopular ones (from left
to right), and the three regions, defined by vertical dashed lines,
corresponding to SH, MT and LT . The x axis of the plots are
maintained linear while the y one is converted to logarithmic for
the sake of visibility.

The unbalanced effect of consumption becomes clear when
analyzing the curves. Netflix data items distribution presents
a wider MT region and a smoother decay than in the case of
Movielens. Extremely unpopular items (the ones surrounding
the 1 value in y axis) represent approximately 15% of the first
dataset, and are not observed in the second one.

Fitting these distributions to power law is useful applying a
general model [21]. The same data is also presented in the log-log
format in Figure 2. According to [9], a quantity x obeys a power
law if it is drawn from a probability distribution p(x) oc x™%.
Instead of a simple power law distribution, we have detected that
a best overall fitting results occur when considering its shifted
version, p(x) « (a + bx)~%. The Kolmogorov-Smirnov goodness
of fit for Movielens items is 0.67 (« = 1.2), and for Netflix is 0.38
(a =1.7).

The general comparison of three datasets is presented in Ta-
bles 1 and 2. The first relevant information to be mentioned is
the number of interactions an item received in order to be con-
sidered in each class of the long tail model. In Columns 6 and 7
of Table 1, it is possible to notice that in order to be considered
a popular movie in the Movielens dataset, a movie should sum
more than 23,301 play counts, and in order to belong to LT it
should have had been watched less than 2,140 times. When it
comes to Netflix items the situation changes, a popular movie
now accounts for more than 101,061, and an unpopular one for
less than 9,635 interactions.

The next interesting information to be highlighted is the ac-
tual sizes of SH, MT and LT regions in data distributions. Table 2
shows the general information about this segmentation, indicat-
ing the proportion of items belonging to each popularity class.
When considering extremely unpopular items, Movielens dataset

2We are here considering an event as one single line in the dataset, containing
information of user id, movie id and timestamp.

10°

104

w 103
]
=
5
2
o
B 10
2
10t
-—
10° aE——
0 5000 10000 15000 20000 25000
movies
i
10% 3
1
10*
2
5 10°
o
S
>
=
2 102
10t H
']
L]
10°
0 2500 5000 7500 10000 12500 15000 17500

movies

Figure 1: Lin-log plots for MovieLens (top) and Netflix (bot-
tom) datasets interactions distribution grouped by items.
The thresholds of 20% and 80% of the total summation are
indicated in vertical dashed lines.

is more prone to bias, having 92.3% of its movies corresponding
to less than 80% of its online activities. When considering the
popular ones, it presents also the smallest SH, with just 0,4% of
the items responsible for 20% of all user activity. Netflix data
presents considerably larger MT, i.e., 10,9% of all movies watched
in the platform.

2.2 User Bias

We analyze the bias of our datasets, considering the complemen-
tary effect of having few items concentrating the majority of
interactions in an on-line service, which is the effect of having
few and very active users along with very sparse ones who rarely
provides feedback to the system. The same methodology is repli-
cated here, but now considering the effect happening because of
different reasons.

A similar decaying effect is observed provoked by the different
behavior of users, as one can see in Figure 3. This time Movielens
curve have smother decaying then in the case of items, and the
proportions associated to the three consumption categories seems
more homogeneous than before.

None of Movielens users watched nearly zero movies, and
it is possible to observe sharp slopes in SH and LT regions in
the Netflix distribution curve. But the reasons that may have
provoked these discontinuities goes beyond the scope of this
article.

Table 1: Datasets description.

Dataset #Events | #Users | #Items | Sparsity | 20% Items | 80% Items | 20% Users | 80% Users
MovieLens | 20,000,263 | 138,493 | 26,744 0.54% 23,301 2,140 775 100
Netflix 100,325,382 | 477,412 | 17,768 1.18% 101,061 9,635 966 178

10-*

107°

1076

10° 10* 10? 10° 104

Figure 2: Log-log plots for MovieLens (top) and Netflix
(bottom) datasets interactions grouped by items.

Table 2: Item Bias Summary

Dataset | Short Head | Medium Tail | Long Tail
MovieLens | 118 (0,4%) | 1,831 (6,8%) | 24,677 (92,3%)
Netflix 154 (0.8%) | 1,938 (10,9%) | 15,522 (87,4%)

The log-log graphs for the user-oriented analysis is presented
in Figure 4. The fitting indexes to the theoretical distribution are
0.42 (a = 0.7), 0.37 (o = 1.0) for Movielens and Netflix respectively,
indicating stronger evidences that these data can be modeled by
the shifted power law distribution.

The description of the user-based analysis is presented in Ta-
bles 1 and 3. In order to be considered a heavy user of Movielens,
and consequently belonging to its SH proportion of the user dis-
tribution, someone should have watched more than 775 movies,
and for the case of sparse users, less than 100 movies. The person
who watched more than 966 movies in Netflix is considered a
frequent user, and the one who made less than 178 contribu-
tions to the data is considered in the long tail proportion of the
distribution, located in the right area in Figure 3.

104

a2
c
=3
S 102
>
o)
o
10t
10°
0 20000 40000 60000 80000 100000 120000 140000
users
10*
10°
&
=
5
S 1
>, 10 1
o '
=]
:
]
:
10!]
'
'
|
3 ®
10° 3 .
]

0 100000

200000
users

300000 400000 500000

Figure 3: Lin-log plots for MovieLens (top) and Netflix (bot-
tom) datasets interactions distribution grouped by users.
The thresholds of 20% and 80% of the total summation are
indicated in vertical dashed lines.

A general overview of the analysis of how unbalanced users
interactions occur is presented in Table 3. SH and MT proportions
are generally bigger when compared to the previous case. And
as a direct consequence, less users are considered sparse in both
cases.

Table 3: User Bias Summary

Dataset | Short Head | Medium Tail Long Tail
MovieLens | 3,261 (2,4%) | 48,909 (35,3%) | 83,062 (60%)
Netflix 14,444 (3%) | 149,905 (31,4%) | 298,619 (62,5%)

3 MEASURING MAINSTREAMINESS

To conclude our analysis of users for the datasets, we introduce
a metric named mainstreaminess, for retrieving the information
of how users are prone to each class of items. A similar approach
is conducted by [2], when three different types of users are de-
fined according to their interest in popular items. Here, we are

10° 10! 10? 10° 104 10°

Figure 4: Log-log plots for MovieLens (top) and Netflix
(bottom) datasets interactions grouped by users.

interested in giving a general overview of the dataset by taking
an average of normalized profiles considering the categories of
items.

The main idea is to iterate through each user: (i) building a
profile with how many items belong to each region of the item
distribution (SH, MT and LT), (ii) normalizing the profile by the
number of items consumed, and (iii) taking an average of these
values for characterizing the dataset as a whole. For doing so, we
adopt the Average Percentage Tail [1]:

1w e @@ no)
APT =10, Z[]] IL(w)] @

where ® corresponds to one of the three categories of items
(short-head, medium-tail or long-tail), L(u) to the profile of users
u, and Uy to the set of users. For ease of representation we define
APT-SH, APT-MT and APT-LT as the proportion of each category
respectively.

The mainstreaminess measurements for the Movielens and
Netflix datasets appear in Figure 5. These results indicate Netflix
users more prone to popular items than Movielens ones. The
highest proportion of MT consumption is observed in the case
of Movielens, together with the smallest proportion of LT.

4 POPULARITY BIAS IN VARIATIONAL
AUTOENCODERS

In order to verify the proposition in a recommendation situation,
we count the proportion of long tail, medium tail and short head

mm= APT-SH APT-MT mmm APT-LT

movielens

- .

Figure 5: Mainstreaminess, or how users are prone to each
item class, for Movielens and Netflix datasets.

items presented in each round of suggestions, in a regular oper-
ation of a state-of-the-art algorithm for Collaborative Filtering
named Variational Autoencoders [15].

Variational Autoencoders (VAE) can be interpreted as a model
whose aim is to find the probability distribution responsible for
generating their input data. Lets suppose a set of input data
x € R% following an unknown probability distribution p(x).
And a set of latent variables defined in a low dimensional space
z € R% (d, < dy). The final model can be summarized as
p(x,z) = p(x|z)p(z), from where one could marginalize z and
find p(x). But the situation is that for most cases this integral
can not be found in closed form [14].

Variational Inference (VI) [13] was recently proposed to ad-
dress this problem thorught optimization, assuming that the dis-
tribution can be approximated by a simpler one that still models
the data. VI specifies Q as a family of densities where members
q(z|x) € Q is a candidate to the conditional p(z|x). The infer-
ence occurs by minimizing the Kullback-Leibler (KL) between
approximated and original density. After re-arranging terms, we
have

log p(x)—Dxkr [q(z]x)||p(z]x)] =
E.[log p(x|z)] — Dk [q(z]x)||p(2)]

We now want to maximize log p(x) minus the approximation
error, and as an alternative we can optimize the second term. In
order to do this, we rely on parametric distributions g and py.
The optimization process will correspond to optimize parameters
¢ and 6 of these distributions with:

Loy =Ez[logpg(xl2)] = f- Dxrlgg (z10)llpe(2)] (3)

Where £ is the Evidence Lower Bound (ELBO), py(x|z) corre-
sponds to the estimation of z space departing from input data,
named Encoder, and gy (z|x) corresponds to estimating the orig-
inal data departing from the latent space, named Decoder (Fig-
ure 6). And this defines Variational Autoencoder. The first term
addresses the reconstruction error, and the second term the er-
ror of distribution approximation. The parameter f controls the
strength of regularization [15].

We start from the implementation published by the authors®
and include an item mapper to it so the model can refer each
item to its category in the Long Tail model. The proportion of the
items belonging to each category in the top-k recommendation
list is measured with equation 1.

@)

3https://github.com/dawenl/vae_cf

Encoder Decoder

go(xu|zu)

Figure 6: Variational Autoencoders

In the case of Movielens data, users who rated less than 5
items as well as ratings (fom 0 to 5) lower than 3.5 were removed,
ending up with 9,990,682 watching events from 136,677 users and
20,720 movies. 10,000 users were separated and split for validation
and test (5,000/ 5,000). VAE was trained with two hidden layers
[20,720 -> 600 -> 200 -> 600 -> 20,720] for 200 epochs. The training
batch size was set to 500 and the validation batch to 2,000. Weight
initialization, activation functions, learning rate, and f regulation
were inherited from [15].

The general results for the validation set achieved 0.33 for
NDCG@10 and 0.34 for Recall@10 as the best results, and with
reasonably stable values after hundred of epochs.

The proportion of LT items increases in the first epochs of the
training, but stabilizes in an irrelevant proportions of recommen-
dation results during the process (Figure 7). The proportion of
SH items starts with extremely high proportion, for reaching an
almost stationary state around 60% of items results in the first 10
higher scores provided by the recommender. A complementary
effect is observed for MT items, representing approximately 40%
of items after few epochs.

In the case of Netflix, ratings lower than 3.5 and users who

rated less than 5 items were also removed, ending up with 56,785,778

watching events from 461,285 users and 17,767 movies (sparsity:
0.693%). The same parameter values were replicated, except for
the size of input layer, which is smaller now [17,767 -> 600 -> 200
-> 600 -> 17,767]. 40,000 users were separated and divided equaly
for validation and test. The model was trained for 200 epochs.

The results achieved for the validation data were 0.32 for both
NDCG@10 and Recall@10 metrics, comparable to best scenarios
provided in the original paper, 0.39 and 0.35, but for NDCG@100
and Recall@20 respectively.

A similar behavior is observed in the case of Netflix data, but in
a slightly lower level than in the previous dataset. The proportion
of extremely popular items corresponds now to approximately
55% of suggestions. The proportion of LT items is also irrelevant,
as one can notice in Figure 7.

5 RELATED WORK

Fairness: Typically, approaches for amplifying biases focus
on how to strengthen fairness. In recommendations, such ap-
proaches can be distinguished as pre-processing, in-processing
and post-processing. Pre-processing approaches target at trans-
forming the data so that any underlying bias or discrimination is
removed. Such approaches work on modifying the input to the
recommender, for example, by appropriate sampling (e.g., [7]),

0.8
—— APT-SH@10

0.7 1 APT-MT@10
—-- APT-LT@10

0.6

0.5

0.4 4

0.3 4

0.2 4

0.1

P Ny T T T e e o]
0.0 T
0 25 50 75 100 125 150 175
epochs

0.8
—— APT-SH@10

0.7 1 -= APT-MT@10
—--- APT-LT@10

0.6

os WMMVW”‘WVWMMWN

0.4

0.3 1

0.2

01

0.0 T T T T T T T

0 25 50 75 100 125 150 175
epochs

Figure 7: APT-SH, APT-MT and APT-LT proportions in the
validation set during Variational Autoencoders for Collab-
orative Filtering training procedure for: (Top) Movielens
and (Bottom) Netflix datasets.

by adding more data to the input (e.g., [22]), or by performing
database repair [19]. In-processing approaches target at modi-
fying existing or introducing new algorithms that result in fair
recommendations, e.g., by removing bias. Existing approaches
focus on fairness-aware matrix factorization [24], multi-armed
bandits [11] and tensor factorization (e.g., [25]). When fairness
with respect to both consumers and to item providers is impor-
tant, variants of the well-known sparse linear method (SLIM) can
be used to negotiate the trade-off between fairness and accuracy
and improve the balance of user and item neighborhoods [6].
Alternatively, we can augment the learning objective in matrix
factorization by adding a smoothed variation of a fairness metric
[24]. As another example, [5] presents a method that mitigate
bias to increase fairness by incorporating randomness in varia-
tional autoencoders recommenders. Post-processing approaches
treat the algorithms for producing recommendations as black
boxes, without changing their inner workings. To ensure fairness,
they modify the output of the algorithm (e.g., [12]). Moving from
individuals to groups, significant research efforts have been done
recently (e.g., [16, 20, 23]), targeting at maximizing the satisfac-
tion of each group member, while minimizing the unfairness
between them.

Popularity Bias: The popularity bias in recommendation re-
sults may be inherited from the data used to train the models,
or even from methods and metrics applied by them. [3] points
for the limitations of error-based evaluation metrics widely used
in the field of recommender systems. They argue that methods

trained to maximize the satisfaction of the majority of users will
perform well on these metrics, but the problem relies on the fact
that items with many training ratings will tend to have more
positives test ratings, and will be liked by more users according
to the test data.

It is important to differentiates the preferences expressed by
user in historical data, from the true preference of a hypothetical
scenario where all users would have rated all items, as pointed

n [21]. The author proposes a nearly unbiased accuracy mea-
surement for recommendation experiments, named Popularity-
Stratified Recall, which favors items from the long tail with the
aim of approximating observed and true preferences. The power-
law modeling is proposed as a surrogate of the unobserved rating
information, in the context where recommendations from the
long tail present small bias, but also increase variance and reduce
the accuracy. [1] addresses the popularity bias in matrix factor-
ization solutions for recommendation by exploring the trade off
between long tail coverage and ranking performance. The regu-
larization factor is associated to the bias in results, to be adjusted
in the experiments.

[10] tackles the specific situation of music recommendation
platforms considering the bias presented in datasets available for
training ML models as a possible reason for a situation where a
group of artists are not suggested to users and therefore receive
less compensation by streaming content providers. [8] has com-
pared Collaborative Filtering, Content-Based and Expert-Based
music recommendation engines for detecting popularity effect
and the influence of the most popular artists in the network. They
figured out that the collaborative algorithm is prone to popularity
bias, and that the two other approaches are more efficient when
exploring the long tail of the play count distributions.

6 CONCLUSION

When discussing about popularity bias, the first question that
may come to someone is: if there are items more attractive than
others, why promoting unpopular ones to a wider public? The
first answer to this is commonly referred as the cold-start sit-
uation: when new items are introduced in the platforms, and
need to be incorporated in the algorithm. We are here talking
about potentially popular items with no historical data, that will
need to enter the long tail before reaching the short head of the
distribution. The challenge, in this case, is promoting relevant
items among unpopular ones.

Mainstreaminess measurement have revealed users’ prefer-
ences concentrated in MT items. In the case of Movielens it
sums almost double the size of SH, and 6 times of the LT pro-
portion. Even then, the recommenders suggests majority of SH
items during the training phase. As discussed here before, the
recommnender have probably learned with more information
about popular items and this results in biased results.

We consider the popularity bias effect as being associated to
the inner operation of the platforms, as much as to the social
effect in which people interact with popular items. Experiments
like the ones presented here are intended for measuring the
overall bias, without distinguishing both sources. We argue that
characterizing popularity bias in recommenders data and algo-
rithms is a first step for addressing it, and addressing also, as a
consequence, the problem of cold-start.

Another objective of this study was to claim attention for the
researchers working on recommender systems field, specially the

ones working with Movielens and Netflix datasets, that popular-
ity bias is present in most of the data available for experiments.
This should help future studies when deciding thresholds for
filtering items, when separating users in a test set, and also for
considering the possibility of potential popular items with few
ratings.

As future work, we aim to explore in detail how to address
popularity bias in the specific case of Variational Autoencoders
applied in collaborative filtering. This is a powerful and scalable
solutions, for high performance recommendations, but also with
space for improvements.

REFERENCES

[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling
Popularity Bias in Learning-to-Rank Recommendation. In RecSys.

[2] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad

Mobasher. 2019. The Unfairness of Popularity Bias in Recommendation. In

RMSE.

Alejandro Bellogin, Pablo Castells, and Ivan Cantador. 2017. Statistical biases in

Information Retrieval metrics for recommender systems. Information Retrieval

Journal 20, 6 (2017), 606—634.

[4] James Bennett, Stan Lanning, and Netflix Netflix. 2007. The Netflix Prize. In
In KDD Cup and Workshop in conjunction with KDD.

[5] Rodrigo Borges and Kostas Stefanidis. 2019. Enhancing Long Term Fairness
in Recommendations with Variational Autoencoders. In MEDES.

[6] Robin Burke. 2017. Multisided Fairness for Recommendation. ~CoRR
abs/1707.00093 (2017).

[7] L.Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K. Vishnoi. 2016.
How to be Fair and Diverse? CoRR abs/1610.07183 (2016).

[8] O. Celma and P. Cano. 2008. From hits to niches? or how popular artists can
bias music recommendation and discovery. In 2nd Workshop on Large-Scale
Recommender Systems and the Netflix Prize Competition (ACM KDD).

[9] Aaron. Clauset, Cosma Rohilla. Shalizi, and M. E. J. Newman. 2009. Power-Law
Distributions in Empirical Data. SIAM Rev. 51, 4 (2009), 661-703.

[10] Andre Holzapfel, Bob L. Sturm, and Mark Coeckelbergh. 2018. Ethical Di-
mensions of Music Information Retrieval Technology. Transactions of the
International Society for Music Information Retrieval 1, 1 (2018), 44 — 55.

[11] Matthew Joseph, Michael J. Kearns, Jamie H. Morgenstern, and Aaron Roth.
2016. Fairness in Learning: Classic and Contextual Bandits. In NIPS.

[12] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2018.

Recommendation Independence. In FAT.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.

In ICLR.

[14] Diederik P. Kingma and Max Welling. 2019. An Introduction to Variational
Autoencoders. CoRR abs/1906.02691 (2019).

[15] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW.

[16] Xiao Lin, Min Zhang, Yongfeng Zhang, Zhaoquan Gu, Yiqun Liu, and Shaoping
Ma. 2017. Fairness-Aware Group Recommendation with Pareto-Efficiency. In
RecSys.

[17] Yoon-Joo Park and Alexander Tuzhilin. 2008. The Long Tail of Recommender
Systems and How to Leverage It. In RecSys.

[18] Noveen Sachdeva, Giuseppe Manco, Ettore Ritacco, and Vikram Pudi. 2019.
Sequential Variational Autoencoders for Collaborative Filtering. In WSDM.

[19] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. 2019. Interventional

Fairness: Causal Database Repair for Algorithmic Fairness. In SIGMOD.

Dimitris Serbos, Shuyao Qi, Nikos Mamoulis, Evaggelia Pitoura, and Panayiotis

Tsaparas. 2017. Fairness in Package-to-Group Recommendations. In WWW.

[21] Harald Steck. 2011. Item Popularity and Recommendation Accuracy. In RecSys.

[22] Harald Steck. 2018. Calibrated recommendations. In RecSys.

[23] Maria Stratigi, Jyrki Nummenmaa, Evaggelia Pitoura, and Kostas Stefanidis.
2020. Fair Sequential Group Recommendations. In SAC.

[24] Sirui Yao and Bert Huang. 2017. Beyond Parity: Fairness Objectives for Col-
laborative Filtering. In NIPS.

[25] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-Aware Tensor-Based
Recommendation. In CIKM.

3

=

[13

[20

	Abstract
	1 Introduction
	2 Measuring Popularity Bias
	2.1 Item Bias
	2.2 User Bias

	3 Measuring Mainstreaminess
	4 Popularity Bias in Variational Autoencoders
	5 Related Work
	6 Conclusion
	References

