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ABSTRACT 
The impact of user interface quality has grown in software system 
engineering. This importance will grow further with upcoming 
new paradigms such as Ambient Intelligence or Ubiquitous 
Computing. These paradigms confront the production industry 
with a new diversity of usage situations. In previous work, we 
have shown the adaptation of a task-oriented, model-based 
Useware engineering process to future paradigms by extending 
existing models and shifting the development/generation of the 
user interface (UI) from development time to run-time. While 
separating the UI design from the application engineering process, 
the problem of the generated UI interfacing with the 
corresponding service functions emerged. We propose a solution 
by integrating the respective linkage information into the function 
model, which will be introduced in this paper. 

1. INTRODUCTION 
Modern industry production environments are characterized by a 
heterogeneous set of technical devices, which consequently 
provide an also heterogeneous set of interaction devices as well as 
concepts [8]. Also, using modern communication technology, 
these devices can be interconnected and therefore share 
information about the current state of the whole environment. 
Thus, if this particular information is available at any time and in 
any place, this could also be a disadvantage, namely, if it is not 
presented properly in terms of format and structure [4]. 
Confronted with this diversity of interaction concepts and 
information, it will be more difficult for users to fulfill their tasks 
or react in proper time in case of an emergency [8]. For this 
reason, it is important to also consider information about the 
usage situation (e.g. users’ roles, user position, environmental 
conditions, etc.). Additionally, the use of (independent) 
information and interaction structures generates new human-
machine-interaction concepts and Useware engineering methods 
[5]. 
The goal of our approach is to support the users in performing 
their tasks as adequately as possible. Basically, the idea to solve 
the problem of “explosive diversity” was to combine all the user 
interfaces of nearby devices into a single holistic interaction 
device with a homogenous interaction concept, which results in 
improved usability as well as in an optimization of the users’ 
workflows. The benefits and the sufficiency of such universal 

remote controls have already been proven in the context of 
intelligent households [6]. Faced with a similar initial situation, 
universal controls also emerge in the domain of production 
industry [8]. Because intelligent production environments appear 
to be highly dynamic, it was not an option to provide a simple, 
static, universal control device. Analyzing a generic environment 
will always lead to a formal description (model), which in the 
following will be the starting point of our UI generation approach 
as described below. The contribution of our paper will be the 
seamless integration of given functional interfaces into the 
completely automated generation process, resulting in a fully 
functional and usable context-sensitive UI. We have developed 
this process as an extension to the Useware development process, 
and we will summarize it in the following section.  

2. TOWARDS A MODEL-BASED 
GENERATION PROCESS 
Evidently, a modern user interface’s level of acceptance is 
determined by its ease of use. Furthermore, this also applies to 
entire software products, because for the user, the UI is the 
product. [17] In order to improve this property, the Useware 
development process – developed by the Center for Human-
Machine-Interaction and successfully applied in numerous joint 
ventures and industrial projects [7] – has to be adapted 
systematically. 

The starting point of this process is always the systematic analysis 
of the user and the respective environment, which is the sole 
guarantee for the efficient use of the final user interface to be 
developed. Subsequently, the result of this phase will be 
formalized during the structural design and the design phase, 
resulting in a room-based use model (useML, see Figure 1), as 
described in [2]. On the basis of this model, it was the UI 
programmers’ task to implement the final UI. Automating this 
step between design and implementation is the research focus of 
the GaBi project, which aims at achieving this goal by defining a 
model-based code generation process. One major challenge we 
explored in our previous work was to automatically interface the 
application services while generating the user interface [1]. We 
propose bridging this gap by including all the necessary 
information in an extended model, as described below.  
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3. INTERFACING SERVICES 
In our scenario, all the devices located in an intelligent production 
environment to be monitored and controlled already possess a 
certain predefined set of well-defined service interfaces. The type 
and communication channel of each service interface strongly 
depend on the brand or manufacturer of the device. It is also 
thinkable – as implemented in our demonstration environment – 
that communication with several devices is encapsulated in or 
delegated by other communication devices (e.g., Bluetooth 
DataEagle, PLC, etc.), which is an attempt to homogenize most of 
the service interfaces to be used. The UI device through which the 
user should be able to control all these devices has to access all 
these service interfaces.  
Since the intention was to provide a complete UI generation 
process without manual intervention, the generator needs to know 
how the respective service interfaces are accessed and how the 
information needs to be structured when a certain user task is 
executed. This means that all the information needed to construct 
the entire UI must be included in the source model – the room-
based use model. Like this model, most of the current models 
provide a detailed description of the human tasks that could be 
performed, but make no statement about the service functions to 
be executed.  

Existing technologies for describing graphical user interfaces 
include, among others, the XML-based XML User Interface 
Language [14] or SwixML [15]. These languages describe a user 
interface and a specific generator creates the final user interface 
from their description. This is a semiautomatic process and does 
not fit our requirements, because with these languages, it is only 
possible to describe the graphical user interface and there is no 
information about accessing service interfaces. The result of such 
approaches is a (compilable) UI source code, containing variation 

points for manually inserting interfacing code. To meet this 
challenge, we analyzed the interface definitions and extended the 
useML model [13] with all the relevant information.  

3.1 Challenges 
For many reasons, the necessary information is not trivial to 
provide, because of the communication diversity already 
mentioned. Only because the application domain of our scenario 
is restrictive in terms of possible communication ways as well as 
other factors such as user roles can the risk of the already 
introduced explosive diversity be handled. 
First, common task and domain models, which are usually 
employed in model-based user interface development (MBUID) 
processes, assume that all tasks can be canonically mapped to an 
obvious domain data operation [1]. Yet, in many real 
environments, service interfaces as well as their manipulating 
operations are not equivalent to the users’ tasks [1]. Therefore, 
each task can be mapped to one (or a set of) operation(s), which 
has to be done manually because in most the cases, the underlying 
semantics are not machine-interpretable.  

 
Second, the basic idea behind MBUID is to separate domain 
knowledge from design knowledge. Thus, the idea is that domain 
experts should be able to create a use model containing all the 
users’ tasks, without having any knowledge about the 
implementation of the final user interface. The generator includes 
expert knowledge regarding the user interface design and 
transforms the model into an efficient user interface. Including 
information about the communication with an application’s 
interface into the model would imply that the domain expert also 
needs to have knowledge about some details of the user interface 
implementation. Hence, the current workflow is visualized in 
Figure 2, which shows, besides the three major input documents, 
the roles of both the software developer (technical 
implementation) and the usability engineer (expert knowledge in 
design aspects). Among other risks (e.g., human errors), it is also 
possible that when this process is applied twice using the same 
documents, it can result in varying output (final user interface) in 
several ways. This depends on several context factors during the 
development process, such as the expert knowledge involved in 
the process. 

 
Figure 1. Integrated room-based use model, containing 
contextual information about the entire environment as 
well as all interactional information about the tasks to be 
performed by users. [2] 
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Figure 2. Manual user interface development process on 

the basis of useML. 



3.2 Idea – Extending useML 
The solution we propose to meet these challenges is to completely 
automate this process. Consequently, the documents describing 
the functionality and the interfaces of the devices to be controlled 
need to be formalized in a machine-interpretable way. 
Additionally, the obstacle of automatically integrating the 
necessary code fragments in order to establish communication 
with the desired devices needs to be conquered. To achieve this 
goal, we introduce an extension to the sophisticated useML 
description. In the following, we will call this model the function 
model. Each device compound (see Figure 1) possesses its own 
function model, because is theoretically possible that each 
compound needs to be addressed in a unique way. In detail, it 
consists of two sections: 

• Connection – including information about establishing 
the connection to the device to be controlled 

• Data – a basic structure of the content of the 
communication 

One important aspect of this extension is the manner of 
communication, which is described in the node connection. This 
model was elicited from sample projects and implemented with 
the use of the uniform resource identifier (URI) standard [16]. 
Hence, the general communication information can be stored in a 
generic way. Therefore, it contains the following information: 

• Scheme – define the kind of communication and the 
needed additional parameters 

• Host – the host to be addressed according to the scheme 

• Data-Reference – reference to the data structure that the 
information needs to be encoded with 

• Priority – if multiple schemes are available, in order to 
choose the most adequate one 

Optionally, it is possible in our case to add parameters to describe 
the communication in more detail, which is specific in our sample 
environment: 

• Device-Number – an unique number of the device to be 
addressed 

• Device-Type – the concrete type of the device (e.g. XY-
Pump) 

Now that a UI generator knows how to communicate with the 
production environment, it is necessary to encode the transmitted 
content as well as its semantic. In order to develop the appropriate 
model, we analyzed sample device descriptions recorded in 
spreadsheet files that contain the composition of Bluetooth 
frames. In regular projects, Useware developers used these 
documents to choose and adjust the widgets of the UI, but also to 
code the action events and the communication with the 
environment using the widespread Profibus protocol. This led to a 
data model attached to each elementary use object. In accordance 
with the message-based communication in the demonstration 
environment, the data model provides information for processing 
incoming frames and for constructing outgoing frames according 
to the current user input. A data node in our model contains: 

• Position – the starting position within the 
communication frame 

• Length – the number of the data blocks used for one 
data set 

• Identifier – of the data set 

• DataFormat – basis of the interpretation of the content 
Also, there are optional properties of the data model: 

• Unit – human-understandable identifier of the data 
content 

• ConversionFactor – if the content needs to be post-
processed 

• RangeMin/RangeMax – boundary conditions of the 
value 

• SignificantDigits – the number of the significant digits 

• StatusMessage – special device-dependent status 
message encoded in one bitvector  

This data model in combination with the communication model 
forms the integrated function model, which allows for deducting 
from elementary use objects how certain bits of information need 
to be transferred in order to execute the desired application logic. 

 

4. FEASABILITY STUDY – 
DEMONSTRATOR 
To show the feasibility of our approach and that of the function 
model, we implemented a basic generator that accepts the 
adjusted useML specification as input. In general, all elementary 
use objects are mapped to an object that will be displayed on the 
screen – the interpretation of task constellation towards widget 
composition is still ongoing work. The device compound structure 
of the room-based use model is canonically mapped to a 
generated simple navigation structure on our sample UI. Thus, a 
user is able to select a device of the compound and perform the 
tasks as specified in the useML description. Generating a 
functional UI was the major purpose of this rudimentary 
generator. How the generator integrates the communication will 
be elaborated in the following, where the universal control UI will 
be considered a product of the generation process.  

In general, due to the structure of the extended useML, each 
elementary use object possesses (if necessary) its own function 
node, which is a link to a certain data entry in the function model 

 
Figure 3. Accessing application services using the Universal 

Control Device. 



of its device compound. Thus, if the user interacts with the user 
interface (triggering a particular elementary use object), we are 
able to identify the corresponding function, extract the user data 
from the user interface, and compose the communication frame 
with the help of the function mode and vice versa.  

For the purpose of demonstration, we installed the user interface 
generator on a Paceblade Slimbook P110 TabletPC [10]. This 
device possesses a 12.1″ touch screen, which can be used without 
keyboard or mouse. 
We analyzed the communication of our sample environment – the 
SmartFactoryKL – and filled in the new models, which are now 
part of the room-based use model. Figure 3 shows the universal 
remote device (foreground) in action while controlling devices of 
the SmartFactoryKL (background). 

5. CONCLUSION AND FUTURE WORK 
The result of our study is that it is feasible to provide all 
information on a certain industrial production environment in 
order to enable an automatic user interface generator to create a 
functional user interface.  

But there are certainly some basic limitations. We extended a 
given user interaction model with communication information, 
because the application domain was clearly restricted. Thus, we 
did not have to face the problem of combinational explosion 
(restricted set of types of devices), which always occurs when 
there are infinite options of combinations between devices, 
communication channels, etc. On the contrary, in our 
environment, there is a clearly defined and standardized 
communication protocol and a predefined set of device types.  

The advantage of our approach is that we facilitated the 
development of a completely automated user interface generator 
on the basis of only a user interaction model, an environmental 
description, and the description of the manner of communication. 
Furthermore, this allows for developing universal control devices 
that are able to adapt to changing peripheral constellations and 
always provide an adequate user interface.  

Since we now have an automated development process, it is our 
vision to improve the usability of the generated user interface by 
including a pattern repository that the generator can make use of. 
This will lead to user interfaces providing holistic interaction 
(look’n’feel) for the control of various devices. Beside other 
effects, we expect to significantly reduce the number of human 
errors that result from switching between different interaction-
concepts. Also, the reaction time in case of critical situations 
might be reduced, which is vital in production environments. 
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