
Towards automatically interfacing application services
integrated into an automated, model-based

user interface generation process
Kai Breiner

Fraunhofer Institute for Experimental
Software Engineering (IESE),

67663 Kaiserslautern, Germany

breiner@cs.uni-kl.de

Oliver Maschino
TU Kaiserslautern, Software

Engineering Research Group,
67663 Kaiserslautern, Germany

maschino@cs.uni-kl.de

Daniel Görlich, Gerrit Meixner
German Research Center for Artificial

Intelligence (DFKI),
67663 Kaiserslautern, Germany

{Daniel.Goerlich,
Gerrit.Meixner}@dfki.de

ABSTRACT
The impact of user interface quality has grown in software system
engineering. This importance will grow further with upcoming
new paradigms such as Ambient Intelligence or Ubiquitous
Computing. These paradigms confront the production industry
with a new diversity of usage situations. In previous work, we
have shown the adaptation of a task-oriented, model-based
Useware engineering process to future paradigms by extending
existing models and shifting the development/generation of the
user interface (UI) from development time to run-time. While
separating the UI design from the application engineering process,
the problem of the generated UI interfacing with the
corresponding service functions emerged. We propose a solution
by integrating the respective linkage information into the function
model, which will be introduced in this paper.

1. INTRODUCTION
Modern industry production environments are characterized by a
heterogeneous set of technical devices, which consequently
provide an also heterogeneous set of interaction devices as well as
concepts [8]. Also, using modern communication technology,
these devices can be interconnected and therefore share
information about the current state of the whole environment.
Thus, if this particular information is available at any time and in
any place, this could also be a disadvantage, namely, if it is not
presented properly in terms of format and structure [4].
Confronted with this diversity of interaction concepts and
information, it will be more difficult for users to fulfill their tasks
or react in proper time in case of an emergency [8]. For this
reason, it is important to also consider information about the
usage situation (e.g. users’ roles, user position, environmental
conditions, etc.). Additionally, the use of (independent)
information and interaction structures generates new human-
machine-interaction concepts and Useware engineering methods
[5].
The goal of our approach is to support the users in performing
their tasks as adequately as possible. Basically, the idea to solve
the problem of “explosive diversity” was to combine all the user
interfaces of nearby devices into a single holistic interaction
device with a homogenous interaction concept, which results in
improved usability as well as in an optimization of the users’
workflows. The benefits and the sufficiency of such universal

remote controls have already been proven in the context of
intelligent households [6]. Faced with a similar initial situation,
universal controls also emerge in the domain of production
industry [8]. Because intelligent production environments appear
to be highly dynamic, it was not an option to provide a simple,
static, universal control device. Analyzing a generic environment
will always lead to a formal description (model), which in the
following will be the starting point of our UI generation approach
as described below. The contribution of our paper will be the
seamless integration of given functional interfaces into the
completely automated generation process, resulting in a fully
functional and usable context-sensitive UI. We have developed
this process as an extension to the Useware development process,
and we will summarize it in the following section.

2. TOWARDS A MODEL-BASED
GENERATION PROCESS
Evidently, a modern user interface’s level of acceptance is
determined by its ease of use. Furthermore, this also applies to
entire software products, because for the user, the UI is the
product. [17] In order to improve this property, the Useware
development process – developed by the Center for Human-
Machine-Interaction and successfully applied in numerous joint
ventures and industrial projects [7] – has to be adapted
systematically.

The starting point of this process is always the systematic analysis
of the user and the respective environment, which is the sole
guarantee for the efficient use of the final user interface to be
developed. Subsequently, the result of this phase will be
formalized during the structural design and the design phase,
resulting in a room-based use model (useML, see Figure 1), as
described in [2]. On the basis of this model, it was the UI
programmers’ task to implement the final UI. Automating this
step between design and implementation is the research focus of
the GaBi project, which aims at achieving this goal by defining a
model-based code generation process. One major challenge we
explored in our previous work was to automatically interface the
application services while generating the user interface [1]. We
propose bridging this gap by including all the necessary
information in an extended model, as described below.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

3. INTERFACING SERVICES
In our scenario, all the devices located in an intelligent production
environment to be monitored and controlled already possess a
certain predefined set of well-defined service interfaces. The type
and communication channel of each service interface strongly
depend on the brand or manufacturer of the device. It is also
thinkable – as implemented in our demonstration environment –
that communication with several devices is encapsulated in or
delegated by other communication devices (e.g., Bluetooth
DataEagle, PLC, etc.), which is an attempt to homogenize most of
the service interfaces to be used. The UI device through which the
user should be able to control all these devices has to access all
these service interfaces.
Since the intention was to provide a complete UI generation
process without manual intervention, the generator needs to know
how the respective service interfaces are accessed and how the
information needs to be structured when a certain user task is
executed. This means that all the information needed to construct
the entire UI must be included in the source model – the room-
based use model. Like this model, most of the current models
provide a detailed description of the human tasks that could be
performed, but make no statement about the service functions to
be executed.

Existing technologies for describing graphical user interfaces
include, among others, the XML-based XML User Interface
Language [14] or SwixML [15]. These languages describe a user
interface and a specific generator creates the final user interface
from their description. This is a semiautomatic process and does
not fit our requirements, because with these languages, it is only
possible to describe the graphical user interface and there is no
information about accessing service interfaces. The result of such
approaches is a (compilable) UI source code, containing variation

points for manually inserting interfacing code. To meet this
challenge, we analyzed the interface definitions and extended the
useML model [13] with all the relevant information.

3.1 Challenges
For many reasons, the necessary information is not trivial to
provide, because of the communication diversity already
mentioned. Only because the application domain of our scenario
is restrictive in terms of possible communication ways as well as
other factors such as user roles can the risk of the already
introduced explosive diversity be handled.
First, common task and domain models, which are usually
employed in model-based user interface development (MBUID)
processes, assume that all tasks can be canonically mapped to an
obvious domain data operation [1]. Yet, in many real
environments, service interfaces as well as their manipulating
operations are not equivalent to the users’ tasks [1]. Therefore,
each task can be mapped to one (or a set of) operation(s), which
has to be done manually because in most the cases, the underlying
semantics are not machine-interpretable.

Second, the basic idea behind MBUID is to separate domain
knowledge from design knowledge. Thus, the idea is that domain
experts should be able to create a use model containing all the
users’ tasks, without having any knowledge about the
implementation of the final user interface. The generator includes
expert knowledge regarding the user interface design and
transforms the model into an efficient user interface. Including
information about the communication with an application’s
interface into the model would imply that the domain expert also
needs to have knowledge about some details of the user interface
implementation. Hence, the current workflow is visualized in
Figure 2, which shows, besides the three major input documents,
the roles of both the software developer (technical
implementation) and the usability engineer (expert knowledge in
design aspects). Among other risks (e.g., human errors), it is also
possible that when this process is applied twice using the same
documents, it can result in varying output (final user interface) in
several ways. This depends on several context factors during the
development process, such as the expert knowledge involved in
the process.

Figure 1. Integrated room-based use model, containing
contextual information about the entire environment as
well as all interactional information about the tasks to be
performed by users. [2]

useML communication
protocol device list

final
user interface

user interface development process
usability engineersoftware developer

expert knowledge

Figure 2. Manual user interface development process on

the basis of useML.

3.2 Idea – Extending useML
The solution we propose to meet these challenges is to completely
automate this process. Consequently, the documents describing
the functionality and the interfaces of the devices to be controlled
need to be formalized in a machine-interpretable way.
Additionally, the obstacle of automatically integrating the
necessary code fragments in order to establish communication
with the desired devices needs to be conquered. To achieve this
goal, we introduce an extension to the sophisticated useML
description. In the following, we will call this model the function
model. Each device compound (see Figure 1) possesses its own
function model, because is theoretically possible that each
compound needs to be addressed in a unique way. In detail, it
consists of two sections:

• Connection – including information about establishing
the connection to the device to be controlled

• Data – a basic structure of the content of the
communication

One important aspect of this extension is the manner of
communication, which is described in the node connection. This
model was elicited from sample projects and implemented with
the use of the uniform resource identifier (URI) standard [16].
Hence, the general communication information can be stored in a
generic way. Therefore, it contains the following information:

• Scheme – define the kind of communication and the
needed additional parameters

• Host – the host to be addressed according to the scheme

• Data-Reference – reference to the data structure that the
information needs to be encoded with

• Priority – if multiple schemes are available, in order to
choose the most adequate one

Optionally, it is possible in our case to add parameters to describe
the communication in more detail, which is specific in our sample
environment:

• Device-Number – an unique number of the device to be
addressed

• Device-Type – the concrete type of the device (e.g. XY-
Pump)

Now that a UI generator knows how to communicate with the
production environment, it is necessary to encode the transmitted
content as well as its semantic. In order to develop the appropriate
model, we analyzed sample device descriptions recorded in
spreadsheet files that contain the composition of Bluetooth
frames. In regular projects, Useware developers used these
documents to choose and adjust the widgets of the UI, but also to
code the action events and the communication with the
environment using the widespread Profibus protocol. This led to a
data model attached to each elementary use object. In accordance
with the message-based communication in the demonstration
environment, the data model provides information for processing
incoming frames and for constructing outgoing frames according
to the current user input. A data node in our model contains:

• Position – the starting position within the
communication frame

• Length – the number of the data blocks used for one
data set

• Identifier – of the data set

• DataFormat – basis of the interpretation of the content
Also, there are optional properties of the data model:

• Unit – human-understandable identifier of the data
content

• ConversionFactor – if the content needs to be post-
processed

• RangeMin/RangeMax – boundary conditions of the
value

• SignificantDigits – the number of the significant digits

• StatusMessage – special device-dependent status
message encoded in one bitvector

This data model in combination with the communication model
forms the integrated function model, which allows for deducting
from elementary use objects how certain bits of information need
to be transferred in order to execute the desired application logic.

4. FEASABILITY STUDY –
DEMONSTRATOR
To show the feasibility of our approach and that of the function
model, we implemented a basic generator that accepts the
adjusted useML specification as input. In general, all elementary
use objects are mapped to an object that will be displayed on the
screen – the interpretation of task constellation towards widget
composition is still ongoing work. The device compound structure
of the room-based use model is canonically mapped to a
generated simple navigation structure on our sample UI. Thus, a
user is able to select a device of the compound and perform the
tasks as specified in the useML description. Generating a
functional UI was the major purpose of this rudimentary
generator. How the generator integrates the communication will
be elaborated in the following, where the universal control UI will
be considered a product of the generation process.

In general, due to the structure of the extended useML, each
elementary use object possesses (if necessary) its own function
node, which is a link to a certain data entry in the function model

Figure 3. Accessing application services using the Universal

Control Device.

of its device compound. Thus, if the user interacts with the user
interface (triggering a particular elementary use object), we are
able to identify the corresponding function, extract the user data
from the user interface, and compose the communication frame
with the help of the function mode and vice versa.

For the purpose of demonstration, we installed the user interface
generator on a Paceblade Slimbook P110 TabletPC [10]. This
device possesses a 12.1″ touch screen, which can be used without
keyboard or mouse.
We analyzed the communication of our sample environment – the
SmartFactoryKL – and filled in the new models, which are now
part of the room-based use model. Figure 3 shows the universal
remote device (foreground) in action while controlling devices of
the SmartFactoryKL (background).

5. CONCLUSION AND FUTURE WORK
The result of our study is that it is feasible to provide all
information on a certain industrial production environment in
order to enable an automatic user interface generator to create a
functional user interface.

But there are certainly some basic limitations. We extended a
given user interaction model with communication information,
because the application domain was clearly restricted. Thus, we
did not have to face the problem of combinational explosion
(restricted set of types of devices), which always occurs when
there are infinite options of combinations between devices,
communication channels, etc. On the contrary, in our
environment, there is a clearly defined and standardized
communication protocol and a predefined set of device types.

The advantage of our approach is that we facilitated the
development of a completely automated user interface generator
on the basis of only a user interaction model, an environmental
description, and the description of the manner of communication.
Furthermore, this allows for developing universal control devices
that are able to adapt to changing peripheral constellations and
always provide an adequate user interface.

Since we now have an automated development process, it is our
vision to improve the usability of the generated user interface by
including a pattern repository that the generator can make use of.
This will lead to user interfaces providing holistic interaction
(look’n’feel) for the control of various devices. Beside other
effects, we expect to significantly reduce the number of human
errors that result from switching between different interaction-
concepts. Also, the reaction time in case of critical situations
might be reduced, which is vital in production environments.

6. ACKNOWLEDGMENTS
Our work as well as the GaBi project is funded in part by the
German Research Foundation (DFG).

7. REFERENCES
[1] Adam, S., Breiner K., Mukasa K. and Trapp, M. 2007.

Challenges to the Model Driven Generation of User
Interfaces at Runtime for Ambient Intelligent Systems.
Workshop: Model Driven Software Engineering for Ambient
Intelligence Applications, European Conference on Ambient
Intelligence, Darmstadt.

[2] Görlich, D. and Breiner, K. 2007. Useware modelling for
ambient intelligent production environments. Workshop:
Model-Driven Development of Advanced User Interfaces,
MoDELS 2007, Nashville.

[3] Görlich, D. and Breiner, K. 2007. Intelligent Task-oriented
User Interfaces in Production Environments. Workshop:
Model-Driven User-Centric Design & Engineering, 10th
IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design,
and Evaluation of Human-Machine-Systems, Seoul.

[4] Bödcher, A., Mukasa, K. and Zühlke, D. 2005. Capturing
Common and Variable Design Aspects for Ubiquitous
Computing with MB-UID. In: Proceedings of the Workshop
on Model Driven Development of Advanced User Interfaces.
Montego Bay, Jamaica.

[5] Zuehlke, D. 2004. Useware-Engineering für technische
Systeme. Springer, Berlin.

[6] Adam S., Breiner K., Mukasa, K. and Trapp, M. 2008. An
Apartment-based Metaphor for Intuitive Interaction with
Ambient Assisted Living Applications. 22nd European
Conference on Human-Computer Interaction HCI2008,
Liverpool.

[7] Zühlke, D. and Thiels, N. 2008. Useware engineering: a
methodology for the development of user-friendly interfaces,
in: Library Hi Tech, Vol. 26, No. 1.

[8] Hofmann, T. and Holzkämper, P. 2008. NEW HMI –
Möglichkeiten und Grenzen abstrakt-geographischer
Visualisierung in Bereich der Anlagensteuerung. In: Brau,
H., Diefenbach, S., Hassenzahl, M., Koller, F., Peissner, M.
and Röse, K. (Editors), Usability Professionals 2008, pp.
204-208, Fraunhofer IRB Verlag, Sep 2008.

[9] Grund, M. 2006. Kommunikationstechnologien in der
modernen Prozessleittechnik – Mit praktischer
Demonstration der dezentralen Parametrierung von
Industriegeräten via Bluetooth. University of Kaiserslautern.

[10] http://www.paceblade.com, last visited 23.09.08.
[11] Bödcher, A. 2007. Methodische Nutzungskontext-Analyse als

Grundlage eines strukturierten USEWARE-Engineering-
Prozesses. Fortschrittberichte pak, Volume 14. University of
Kaiserslautern.

[12] Maschino, O. 2008. A Strategy for Automated Generation of
Graphical User Interfaces based on the Useware Markup
Language in the Domain of Intelligent Production
Environments. Diploma Thesis, University of Kaiserslautern.

[13] Görlich, D., Thiels, N. and Meixner, G. 2008. Personalized
Use Models in Ambient Intelligence Environments. Proc. of
the 17th IFAC World Congress, Seoul.

[14] https://developer.mozilla.org/en/XUL, last visited 23.09.08.
[15] http://www.swixml.org, last visited 23.09.08.
[16] Berners-Lee, T., Fielding, R., and Masinter, L. 1998 Uniform

Resource Identifiers (URI): Generic Syntax. RFC. RFC
Editor.

[17] Trapp, M. 2008. Generating User Interfaces for Ambient
Intelligence Systems. PhD-Thesis, Software Engineering
Research Group, University of Kaiserslautern.

