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Preface

Welcome to the 23rd International Workshop on Description Logics, DL 2010,
in Waterloo, Canada. The workshop continues the long-standing tradition of
international workshops devoted to discussing developments and applications of
knowledge representation formalisms and systems based on Description Logics.
The list of the International Workshops on Description Logics can be found at
http://dl.kr.org.

There were 48 papers submitted each of which was reviewed by at least three
members of the program committee or additional reviewers recruited by the PC
members.

In addition to the presentation of the accepted papers, posters, and demos the
following speakers agreed to give invited talks at the workshop:

— From DL to SMT (and back?)
Roberto Sebastiani (Trento)

— Searching for the Holy Grail.
Ian Horrocks (Oxford)

— Composing and Inverting Schema Mappings.
Phokion Kolaitis (UC Santa Cruz and IBM Research - Almaden)

The organizers of the DL 2010 workshop gratefully acknowledge the logistical and
financial support of the Fields Institute (http://www.fields.utoronto.ca/),
and the logistical support and use of facilities provided by the University of
Waterloo.

Our thanks go to all the authors for submitting to DL, and to the invited speak-
ers, PC members, and all additional reviewers who made the technical pro-
gramme possible. The organization of the workshop also greatly beneted from the
help of many people at the University of Waterloo, in particular Jeff Pound and
Jiewen Wu for helping with the local organization and the DL 2010 WEB site. Fi-
nally, we would like to acknowledge that the work of the PC was greatly simplied
by using the EasyChair conference management system (www.easychair.org)
developed by Andrei Voronkov.

Volker Haarslev, David Toman, and Grant Weddell
2010 PC chairs and organizers
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From DL to SMT (and back?)

Roberto Sebastiani
Trento

Satisfiability Modulo Theory (SMT) is the problem of checking the satisfia-
bility of first-order formulas with respect to some background theories. In recent
years, SMT has become increasingly popular due to its success in encoding and
solving many real-world problems in important applications domains that in-
clude formal verification, scheduling and compiler optimization. To this extent,
very-efficient SMT solvers have been developed combining the power of SAT
solvers with the expressiveness of dedicated decision procedures for several the-
ories of practical interest (including, e.g., the theory linear arithmetic, of arrays,
and of bit-vectors). In this talk I will survey my many-year experience in SMT,
which initially largely benefitted from ideas coming from my previous work on
satisfiability in ALC. I will highlight techniques and ideas which may be of inter-
est to the DL community and hint at some ongoing work in which DL reasoning
largely benefits from SAT and SMT techniques.



Searching for the Holy Grail

Tan Horrocks
Oxford

In this talk I will review my personal odyssey from Grail to the Semantic
Web and back again: a fifteen-year (and counting) mission to explore strange
new worlds; to seek out new logics and new applications; to boldly go where
no description logician has gone before. I will try to identify important lessons
that T have learned along the way about the theory and practice of logic based
knowledge representation (and I will try to avoid further mixing of metaphors),
but like any ”road movie”, the journey should be at least as important as the
destination.



Composing and Inverting Schema Mappings

Phokion Kolaitis
UC Santa Cruz and IBM Research - Almaden

Schema mappings are high-level specifications that describe the relationship
between two database schemas. Schema mappings constitute the essential build-
ing blocks in formalizing the main data inter-operability tasks, including data
exchange and data integration. Several different operators on schema mappings
have been introduced and studied in considerable depth. Among these, the com-
position operator and the inverse operator are the most fundamental and promi-
nent ones. The aim of this talk is to present an overview of results about two
these operators, and to illustrate their applications to schema evolution.
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Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

Temporal Conceptual Modelling with DL-Lite

A. Artale! R. Kontchakov2? V. Ryzhikov,! and M. Zakharyaschev?

1 KRDB Research Centre 2 Dept. of Comp. Science and Inf. Sys.
Free University of Bozen-Bolzano Birkbeck College
1-39100 Bolzano, Italy London WC1E 7THX, UK
lastname @inf .unibz.it {roman,michael}@dcs.bbk.ac.uk

1 Introduction

Conceptual modelling formalisms such as the Entity-Relationship model (ER)
and Unified Modelling Language (UML) have become a de facto standard in
database design by providing visual means to describe application domains in a
declarative and reusable way. On the other hand, both ER and UML turned out
to be closely connected with description logics that are underpinned by formal
semantics and thus capable of providing services for effective reasoning over
conceptual models; see, e.g., [11,4].

Temporal conceptual data models (TCMs) [18,25] have been introduced in
the context of temporal databases [20, 15, 13]. In this case, apart from the classi-
cal constructs—such as inheritance between classes and relationships, cardinality
constraints restricting participation in relationships, and disjointness and cover-
ing constraints—temporal constructs are used to capture the temporal behaviour
of various components of conceptual schemas. Such constructs can be grouped
into 3 categories. Timestamping constraints discriminate between those classes,
relationships and attributes that change over time and those that are time-
invariant [28,18,16,6,25]. Evolution constraints control how domain elements
evolve over time by ‘migrating’ from one class to another [19, 23, 26, 25, 3]. We
distinguish between qualitative evolution constraints describing generic tempo-
ral behaviour, and quantitative ones specifying the exact moment of migration.
Temporal cardinality constraints restrict the number of times an instance of a
class participates in a relationship. Snapshot cardinality constraints do it at each
moment of time, while lifespan cardinality constraints impose restrictions over
the entire existence of the instance as a member of the class [27,22].

Temporal conceptual data models can be encoded in various temporal de-
scription logics (TDLs), which have been designed and investigated since the
seminal paper [24] with the aim of understanding the computational price of
introducing a temporal dimension in DLs; see [21] for a recent survey. A general
conclusion one can draw from the obtained results is that—as far as there is
nontrivial interaction between the temporal and DL components—TDLs based
on full-fledged DLs like ALC turn out to be too complex for effective reasoning
(see the end of the introduction for details).

The aim of this paper is to tailor ‘minimal’ TDLs that are capable of repre-
senting various aspects of TCMs and investigate their computational behaviour.
First of all, as the DL, component we choose the ‘light-weight’ DL-Lite logic
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DL—the%Ol, which was shown to be adequate for capturing conceptual models
without relationship inheritance! [4], and its fragment DL-Lite,, with most
primitive concept inclusions, which are nevertheless enough to represent almost
all types of constraints (apart from covering). To discuss our choice of the tem-
poral constructs, consider a toy TCM describing a company.

For the timestamping constraint ‘employee is a snapshot class’ (by the stan-
dard TCM terminology, such a class never changes in time) one can use the
axiom Employee C & Employee with the temporal operator & ‘always.” Likewise,
the constraint ‘manager is a temporary class’ in the sense that each of its in-
stances must leave the class, the axiom Manager C © —Manager is required, where
® means ‘some time.” Both of these axioms are regarded as global, i.e., applicable
to all time points. Note that to express ¢ using more standard temporal con-
structs, we need both ‘some time in the past’ Op and ‘some time in the future’
Op: e.g., ® = OpOp. To encode a snapshot n-ary relationship, one can reify it
into a snapshot class with n auxiliary rigid—i.e., time-independent—roles; for a
temporary relationship, the reifying class is temporary and the roles are local [9,
7). The qualitative evolution constraints ‘each manager was once an employee’
and ‘a manager will always remain a manager’ can be expressed by the axioms
Manager C OpEmployee and Manager = OrpManager, while ‘an approved project
keeps its status until a later date when it actually starts’ can be expressed using
the ‘until’ operator: ApprovedProject = ApprovedProject U Project. The quantita-
tive evolution constraint ‘each project must be finished in 3 years’ requires the
next-time operator Op: Project E OpOpOpFinishedProject. The snapshot cardi-
nality constraint ‘an employee can work on at most 2 projects at each moment of
time’ can be expressed as Employee C < 2worksOn, while the lifespan constraint
‘over the whole career, an employee can work on at most 5 projects’ requires tem-
poral operators on roles: Employee C < 5 ®worksOn. Note that ‘temporalised’
roles of the form © R and B R are always rigid. To represent a temporal database
instance of a TCM, we use assertions like OpManager(bob) for ‘Bob was a man-
ager last year’ and Opmanages(bob, cronos) for ‘Bob will manage project Cronos
next year.” As usual, n-ary tables are represented via reification.

These considerations lead us to TDLs based on DL—Lite%ol and DL—Lite/X),.e
and interpreted over the flow of time (Z, <), in which (1) the future and past
temporal operators can be applied to concepts; (2) roles can be declared local
or rigid; (3) the ‘undirected’ temporal operators ‘always’ and ‘some time’ can
be applied to roles; (4) the concept inclusions (TBox axioms) are global and the
database (ABox) assertions are specified to hold at particular moments of time.

To our surprise, the most expressive TDL based on DL—Liter\éol and featuring
all of (1)—(4) turns out to be undecidable. As follows from the proof of Theorem 5
below, it is a subtle interaction of functionality constraints on temporalised roles
with the next-time operator and full Booleans on concepts that causes undecid-
ability. This ‘negative’ result motivates consideration of various fragments of our
full TDL by restricting not only the DL but also the temporal component. The
table below illustrates the expressive power of the resulting fragments in the con-
text of TCMs. We also note that both DL—Liteé\gol and DL-Lite?, . with global

core

! DL-Lite},,; with relationship inclusions regains the full expressive power of ALC.
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axioms can capture snapshot cardinality constraints, while lifespan cardinality
constraints require temporalised roles of the form ¢ R and & R.

ggrl;lcsgrtal . ) evolution
operators timestamping qualitative quantitative
uss + + +
Op/p; OFyp + + +

Opy/p + + -

&, Or/p + - +

+ — _

The next table summarises the complexity results obtained in this paper for
satisfiability of temporal knowledge bases formulated in our TDLs.

concept local & rigid roles only tempolr alised
temporal - — roles -
operators DL—L1t€/b\£ol DL-Lite,,,, DL-Litey,,,
ujs PSPACE Thm. 1 PSPACE [s] undec. Thm. 5
Or/p, Or/p| PSPACE Thm. 2 (i) NP Thm. 3 undec. Thm. 5
Op/p NP Thm. 2 (4 NP [g ?

&, Op/p PSPACE Thm. 2 (i) NP Thm. 3 undec. Thm. 5
NP Thm. 2 (3) NLOGSPACE Thm. 4 NP Thm. 6

Apart from the undecidability result of Theorem 5, quite surprising is NP-
completeness of the temporal extension of DL-Lite,,,, with the operators Op
and Op (and their past counterparts) on concepts provided by Theorem 3. In-
deed, if full Booleans are available, even the propositional temporal logic with
these operators is PSPACE-complete. Moreover, if the ‘until” operator U is avail-
able in the temporal component, disjunction is expressible even with DL-Lite,,,.
as the underlying DL, and the logic becomes PSPACE-complete [8]. In all other
cases, the complexity of TDL reasoning coincides with the maximal complex-
ity of reasoning in the component logics (despite nontrivial interaction between
them, as none of our TDLs is a fusion of its components). It is also of interest
to observe the dramatic increase of complexity caused by the addition of Og to
the logic in the lower right corner of the table (from NP to undecidability).

To put this paper in the more general context of temporal description logics,
we note first that our TDLs extend those in [8] with the past-time operators S,
Op, Op, Op over Z (which are essential for capturing timestamping constraints),
universal modalities B and ®, and temporalised roles. Temporal operators on
DL-Lite axioms and concepts in the presence of rigid roles were investigated
in [7], where it was shown that the resulting temporalisations of DL—the/b\gol
and DL—LJ'te/h\/Om are EXPSPACE-complete. Temporal extensions of the standard
DL ALC feature the following computational behaviour: ALC with temporal
operators on axioms, rigid concepts and roles is 2EXPTIME-complete [10]. It is
ExXPSPACE-complete if temporal operators on concepts and axioms are allowed
but no rigid or temporalised roles are available [17], and EXpTIME-complete if
the language allows only temporalised concepts and global axioms [24, 2]. Finally,
the ‘undirected’ temporal operators & and € on concepts and roles together with
global axioms result in a 2EXPTIME-complete extension of ALC [9].
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2 Temporal DLs based on DL-Lite'ggol

The TDL TysDL-Lite} , is based on DL-Lite} , [1,5], which, in turn, extends
DL-Liten 7 [12] with full Booleans over concepts and Cardlnahty restrictions over
roles. The language of Ty sDL- L1tebool contains object names ag, a1, ..., concept
names Ag, A1, ..., local role names Py, Py, ... and 7igid role names Go,G1,. . ..
Roles R, basic concepts B and concepts C are defined as follows:

S =P | G, R == S | S,
B == 1 | A | >¢R,
C = B | —‘C | Cl|_|02 | CﬂJC’g ‘ 01802,

where ¢ > 1 is a natural number (the results obtained below do not depend
on whether ¢ is given in unary or binary). A TUSDL—LMe{,\ZOl interpretation is a
function Z on the integers Z (the intended flow of time):

I(n) = (A%ak, ..., A™ . pI™ L Gim ),

where A7 is a nonempty set, the (constant) domain of Z, af € AT, Aiz(n) c Af
and P () Gz(n C AT x AT with G ) = Gz(m) for i € N and n,m € Z.
We adopt the unique name assumptlon accordmg to which af # a , for i # 7,
although our complexity results would not change if we dropped 1t apart from
the NLOGSPACE bound of Theorem 4, which would increase to NP [5] The role
and concept constructs are interpreted in Z as follows:

(§7)Fm = {(y, 2) | (w,y) € STMY, LT =, (=C)TM = AT\ ¢TOV,
(C1N G = 7™ nof™, (= qR)™ = {z |ty | (x.y) € RT™} > g},
(CL U Cp)F™ = Uk> (G ;M n Mo<m<i Cz(m))

(€1 S Co™ = (30N crmy.

n>m>k

Note that our until and since operators are ‘strict’ (i.e., do not include the
current moment). We also use the temporal operators Op (‘some time in the
future’), Op (‘some time in the past’), € (‘some time’), their duals Op, Op and &,
Or (‘next time’) and Op (‘previous time’), which are all expressible by means of
Uand S,e.g., OpC = -1UC, OpC = =Op—C, OpC = LUC, & (C = OpdpC and
B C = 0p0pC. (Other standard abbreviations we use include Cy U Cy, 3R and
T = —1.) Apart from full TMSDL-LwengOl, we consider a few of its sublanguages
allowing only some of the (definable) temporal operators mentioned above:

- TFPDL—the%Ol, which allows only ¢pC, OpC and their duals (but no OpC
or C1 U Cy), and its extension TFpXDL—Litejb\gol with OpC and OpC;

— TyDL-Litey, ,, allowing only ¢ C and B C, and its extension Tyx DL-Lite} ,
with OpC and OpC.

A TBox, T, in any of our languages L is a finite set of concept inclusions
(CIs) of the form C; C Cy, where the C; are L-concepts. An ABor, A, consists
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of assertions of the form O™B(a) and O"™S(a,b), where B is a basic concept, S
a (local or rigid) role name, a,b object names and O, for n € Z, is a sequence
of n operators Op if n > 0 and |n| operators Op if n < 0. Taken together, the
TBox 7 and ABox A form the knowledge base (KB) I = (7, A) in L.

The truth-relation is defined as usual: Z | C; C Cy iff Clz(n) - CQI(n), for
all n € Z, that is, we interpret concept inclusions globally, 7 = O"B(a) iff
o € BT and T |= O"S(a,b) iff (a,b) € ST, We call Z a model of a KB
K and write Z = K if 7 |= o for all o in K. If K has a model then it is said to be
satisfiable. A concept C (role R) is satisfiable w.r.t. K if there are a model Z of
K and n € Z such that CZ(™) #£ () (respectively, R*(™) # (). Clearly, the concept
and role satisfiability problems are equivalent to KB satisfiability.

Our first result states that the satisfiability problem for TugDL-the/b\gol KBs
is as complex as satisfiability in propositional temporal logic LTL.

Theorem 1. Satisfiability of Ty sDL-Litey,,; KBs is PSPACE-complete.

ool

The proof is by a two-step (non-deterministic polynomial) reduction to LTL.
First, we reduce satisfiability of a TysDL-Lite)., , KB K = (T, A) to satisfiability
in the one-variable first-order temporal logic in a way similar to [8]. For each

basic concept B (# L), we take a fresh unary predicate B*(x) and encode 7T as

T = N\ 8V (Ci(2) - Ci(@)),
C1ECReT

where the C} are the results of replacing each B with B*(z) (M with A, etc.).
We assume that 7 contains CIs of the foom > gRE > ¢’ R, for > ¢ R, > ¢’ R in
T such that ¢ > ¢’ and there is no ¢’ with ¢ > ¢”” > ¢’ and > ¢” R in 7. We also
assume that 7 contains > ¢ R=E> g R if > q R occurs in 7, for a rigid role R
(i.e., for G; or G; ). To take account of the fact that roles are binary relations,
we add to 7T the following formula, for each role name S:

es = B(Fx(39)"(z) < Iz (357)"(2))

(which says that at each moment of time the domain of S is nonempty iff its
range is nonempty). The ABox A is encoded by a conjunction A of ground
atoms of the form O™ B*(a) and O™ (> ¢ R)*(a) in the same way as in [8]. Thus,
IC is satisfiable iff the formula

ICT:TTA/\sSAAT
S

is satisfiable. The second step of our reduction is based on the observation that
if KCT is satisfiable then it can be satisfied in a model such that

(R) if (39)*(x) is true at some moment (on some domain element) then it is
true at all moments of time (perhaps on different domain elements).

Indeed, if KT is satisfied in Z then it is satisfied in the disjoint union Z* of all Z",
n € 7Z, obtained from Z by shifting its time line n moments forward. It follows
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from (R) that KT is satisfiable iff there is a set X of role names such that

K= = 70 A A ((39)"(ds) A (3ST)(ds-)) A
sex A B8vz-(39)*(x) v (3ST)*(z)) A Al
S¢x

is satisfiable, where the dg are fresh constants (informally, the roles in X are
nonempty at some moment, whereas all other roles are always empty). Finally,
as K1¥ contains no existential quantifiers, it can be regarded as an LTL-formula
because all the universal quantifiers can be instantiated by all the constants in
the formula, which results only in a polynomial blow-up of K.

This reduction can also be used to obtain complexity results for the fragments
of TUSDL—Lite/b\gol mentioned above. Using the well-known facts that satisfiabil-
ity in the fragments of LTL with Op/COp and with € is NP-complete, and that
the extension of any of these fragments with Or /Op becomes PSPACE-complete
again, we obtain:

Theorem 2. (i) Satisfiability of TrpDL-Lite)y. , and Ty DL-Litey, ; KBs is NP-
complete. (i) For TgpxDL-LiteY ,, and TyxDL-Lite), , KBs, satisfiability is
PSPACE-complete.

3 Temporal DLs based on DL-LiteV

core

So far, to decrease complexity we have restricted the expressive power of the
temporal component of TuSDL-Lite{,\gol. But the underlying DL DL-the/b\gol also
has some natural fragments of lower complexity [5]. In this section, we consider
the simplest of them known as DL-Lite,,,, and containing only ClIs of the form
B1 C By and By M By £ 1, where the B; are basic concepts. Satisfiability of
DL—Lite/C\(/We KBs is NLOGSPACE-complete.

Let Ty sDL-LiteY,  be the fragment of TUSDL-Litengol with Cls of the form
Dy C Dy and Dy M Dy E 1, where the D; are defined by the rule:

D = B | B1Z/lB2 | BlSBQ.
By restricting Dy and D> to concepts of the form
D = B | ¢sB | ¢pB | OB | 0OpB

we obtain TFpDL—thejc\gm. These restrictions do not improve the complexity of
reasoning: satisfiability of TusDL—Litejc\g,,e KBs is PSPACE-complete, while for
TrpDL-Lite? it is NP-complete [8].

What is really surprising and nontrivial is that extending TFPDL—thejc\gTe
with the next- and previous-time operators does not increase the complexity;
cf. Theorem 2 (ii). More formally, define TFPXDL—LiteN by restricting D; and

core
D5 to concepts of the form:
D == B | ogB | ¢pB | OgB | OpB | OrB | OpB,
and let Tyx DL-LiteY, .

D == B | B | BB | OrB | OpB.

be the logic with the D; of the form:
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Theorem 3. Satisfiability of Trpy DL-Lite", . and Tyx DL-Lite", = KBs is NP-

core core
complete.

We present only a sketch of the proof here; the full proof can be found at
http://wuw.dcs.bbk.ac.uk/~roman/papers/d110-full.pdf.

In a way similar to the proof of Theorem 1, one can (non-deterministically
and polynomially) reduce satisfiability of a Trpx DL-Lite,,,, KB to satisfiability
of an LTL-formula ¢ = A\, B(E; V E}) A1, where the E; and E; are of the form
p, Cpp, Opp, Opp, Opp, Opp, Opp or a negation thereof, and v is a conjunction
of formulas of the form O™p, p a propositional variable. Let I" be the set of all
subformulas of ¢ of the form Cpp, Cpp, Opp or Opp. It should be clear that
if ¢ is satisfied in an interpretation then the flow of time can be partitioned
into |I'| + 1 intervals Io,..., I such that, for each v € I' and each I;, 7 is
true at some point in I; iff v is true at every point in I;. The existence of such
intervals can be expressed by certain syntactic conditions on their ‘states,” the
most crucial of which is satisfiability of a formula of the form

X = UAOSTSAO™W ACY"),

for @ = \,(D;V Dj), with each of the D; and D] being a literal L (a propositional
variable or its negation) or OL, conjunctions ¥, ¥’ and ¥" of literals, and m > 0,
where O™V is the result of attaching n operators O to each literal in ¥ and
Osme = Agc;c,, O'P. Intuitively, m is the number of distinct states in an
interval I;, ¥ and ¥’ are the first and the last states in I;, ¥ is the first state
of the next interval I;;1, and @ a set of binary clauses that describe possible
transitions between the states. Let consly (¥) be the set of all literals L that are
true at the moment m > 0 in every model of UAOS™P. As the formula UAOS"P
is essentially a 2CNF, one can compute consj (¥) inductively as follows:

consy (W) = {L | UV |= L},
consig(W) ={L | ® =L — OL,L' € conslp (W)} U{L|® = L}.

For each L, construct a non-deterministic finite automaton 2, = (Q, Qo, o, F1)
over the alphabet {0} that accepts 0™ iff L € consj(¥). Define the states in Q
to be all the literals from y, the set of initial states Qo = cons(¥), the accepting
states Fy, = {L}, and the transition relation

o={(L"L')|®}=L" —OL}U{(L',L')| & }=L'.

Then a state L is reachable in m o-steps from a state in Qg iff L € consp (¥),
and so %Ay, is as required. Every such 2 can be converted into an equivalent
automaton in the Chrobak normal form [14] using Martinez’s algorithm [29],
which gives rise to Mr-many arithmetic progressions al +bI'N;, . .. ,aﬁ/IL +b§4L N,
where a + bN = {a + bn | n € N}, such that

(A1) Mp,af bl <|®@UW¥|? for 1 <i < M, and

17

(As) L€ consip () iff m € M5 (aF + bEN).

Satisfiability of y can now be established by a polynomial-time algorithm which
checks whether the following three conditions hold:
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1. p,—p € cons}(¥), for no variable p and no 0 <n <m+1;
2. =L ¢ consiy (W), for all literals L € ¥,
3. =L ¢ consly (@), for all literals L € ¥".

To verify 1, we check, for each variable p, whether the linear Diophantine equa-
tions a? + bz = a;p + b;py, for 1 <i < M, and 1 < j < M_,, have a solution
(20, Y0) such that 0 < af +bjzg <m+1.Set a =0}, b= —b;" and ¢ = a;* —a,
which gives us the equation ax 4+ by = c¢. If @ # 0 and b # 0 then, by Bézout’s
lemma, it has a solution iff ¢ is a multiple of the greatest common divisor d of a
and b, which can be checked in polynomial time using the Euclidean algorithm
(provided that the numbers are encoded in unary, which can be assumed in view
of (A1)). Moreover, if the equation has a solution, then the Euclidean algorithm
also gives us a pair (ug,vg) such that d = aug + bvg, in which case all the solu-
tions of the above equation form the set {((cuo + bk)/d, (cvo — ak)/d) | k € Z}.
Thus, it remains to check whether a number between 0 and m + 1 is contained
in af +b} (a;” —aj)ug/d+ b7, /dN. The case a = 0 or b = 0 is left to the reader.
To verify condition 2, we check, for each L € ¥’ whether m belongs to one of
a;L —l—b;LN, for 1 < ¢ < My, which can be done in polynomial time. Condition 3
is analogous. This gives us the NP upper bound for the logics mentioned in
Theorem 3. The lower bound can be proved by reduction of the 3-colourability
problem to satisfiability of TUXDL—Lite/C\gT KBs.

Theorem 3 shows that TFPXDL—LiteJcV:m can be regarded as a good candi-
date for representing temporal conceptual data models. Although not able to
express covering constraints, TFPXDL-theQ{W still appears to be a reasonable
compromise compared to the full PSPACE-complete logic TFPXDL-ther\gOl.

By restricting the temporal constructs to the undirected universal modalities
and &, we obtain an even simpler logic:

Theorem 4. Satisfiability of TUDL—theN KBs is NLOGSPACE-complete.

core

The proof of the upper bound is by embedding into the universal Krom
fragment of first-order logic.

4 Temporal DLs with Temporalised Roles

As we have seen before, in order to express lifespan cardinalities, temporal op-
erators on roles are required. Modalised roles are known to be ‘dangerous’ and
very difficult to deal with when temporalising expressive DLs such as ALC [17,
Section 14.2]. To our surprise, even in the case of DL-Lite, temporal operators on
roles may cause undecidability (while rigid roles are ‘mostly harmless’). Denote
by T7§DL—L1'tejb\£ol the fragment of T usDL—Liteﬁ)\(/ml with OF as the only temporal
operator over concepts and with roles R of the form

R == S | S | R | ®HR.
The extensions of © R and & R in an interpretation Z are defined as follows:

(@R =] R* and (BR™ = R

keZ keZ
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Theorem 5. Satisfiability of Tx DL-Lit voor KBS s undecidable.

0ol

The proof is by reduction of the N x N-tiling problem: given a finite set T’
of tile types t = (up(t), down(t), left(t), right(t)), decide whether T can tile the
N x N-grid. We assume that the tiles use k colours numbered from 1 to k.

We construct a Tx DL-Lite)y, , KB K7 such that Kr is satisfiable iff T tiles
N x N. The temporal dimension clearly provides us with one of the two axes of
the grid. The other axis is constructed from the domain elements: let R be a
role such that > 2® RC 1| and > 2¢® R~ C L. In other words, if xRy at some
moment of time then there is no y' # y with 2Ry’ at any moment of time (and
the same for R™). We can generate an infinite sequence of the domain elements
by saying that IR~ M Op3R~ is nonempty and IR~ M Op3dR~ C IR M Op3R.
(The reason for generating the R-arrows at two consecutive moments of time will
become apparent below.) It should be also noted that the produced sequence may
in fact be either a finite loop or an infinite sequence of distinct elements.

Now, let ¢t be a fresh concept name, for each ¢t € T, and let tile types be
disjoint, i.e., t Mt C L for t # t'. After the double R-arrows we place the first
column of tiles, and every k + 1 moments afterwards we place a column of tiles
that matches the colours of the previous column:

IR™ M Op3R™ C,cr OrOrt, ¢ E Uignitmiepiqeny Ot/ for each t € T.

It remains to ensure that the tiles are arranged in a proper grid and have match-
ing top-bottom colours. It is for this purpose that we have (i) used the dou-
ble R-arrows to generate the sequence of domain elements, and (i) placed the
columus of tiles every k + 1 moments of time (not every moment). Consider the
following CIs, fort € T and 1 <i < k:

tC-3R", tC-Op3R™ (if i # down(t)) and tC OfF"3R.

The first two Cls ensure that between any two tiles £ 4+ 1 moments apart there
may be only one incoming R-arrow. This, in particular, means that after the
double R-arrows no other two consecutive R-arrows are possible, and thus the
proper N x N-grid is ensured. Moreover, the exact position of the incoming R-
arrow is uniquely determined by the down-colour of the tile, which in conjunction
with the last CI guarantees that this colour matches the tile below. The following
picture illustrates the construction:

o @] [ ] o (e} (e} [ ]
A A ; ;
| up(t) :
—_—
| |
| |
| |
° o) o °
A A t I
| |
| up(t’) = down(t) |
R ! |
| |
| |
o o ® o o ®

~+

time

o
—
o
Ea
+
w
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Note that the next-time operator Op is heavily used in the encoding above.
If we replace it with € and E on concepts, then reasoning in the resulting logic
TﬁDL—Lite{)\gol becomes much simpler:

Theorem 6. Satisfiability of TEDL—Lit boor KBS is NP-complete.

0ol

This result is proved using a modification of the quasimodel construction
from [7,8]: we show that a KB is satisfiable iff there exists a quasimodel of
polynomial size. In the types of our quasimodels, concepts > ¢ R, > ¢® R and
> q & R reflect the number of R-successors of the element required, respectively,
in the current moment of time, ‘sometime’ (& R-successors) and ‘always’ (B R-
successors). In order to deal with temporalised roles, we have to introduce the
following conditions on quasimodels: () the numbers of € R-successors and B R-
successors in types do not change along a run (in other words, temporalised roles
are rigid roles); (#) the number of R-successors in every type is sandwiched
between the number of B R- and the number of © R-successors; (4ii) if there is
a run with more ® R-successors than & R-successors, then there is a run with
more © R™-successors than Bl R™-successors; () in each run with more ® R-
successors than B R-successors, not all R-successors are B R-successors, and not
all ® R-successors are R-successors at all moments of time. Special conditions
are also required for the runs on the objects in the ABox. Full details can be
found at http://www.dcs.bbk.ac.uk/~roman/papers/d110-full.pdf.

5 Conclusion

From the complexity-theoretic point of view, the best candidates for reasoning
about TCMs appear to be TFpXDL—LiteJC\(/)m and TFPXDL—Lite/b\gOl: the former
is NP-complete and the latter PSPACE-complete. Moreover, we believe that the
reduction of TFPXDL-Lite/C\{W to LTL in the proof of Theorem 3 can be done
deterministically, in which case one can use standard LTL provers for TCM
reasoning. We also believe that TFpXDL—Lite/C\gTe extended with temporalised
roles can be decidable, which remains one of the most challenging open problems.
But it seems to be next to impossible to reason in an effective way about all

TCM constraints without any restrictions.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the
light of first-order logic. In Proc. of AAAI 2007.

2. A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temporal description
logic for reasoning about conceptual schemas and queries. In Proc. of JELIA, 2002.

3. A. Artale, C. Parent, and S. Spaccapietra. Evolving objects in temporal informa-
tion systems. Annals of Mathematics and Artificial Intelligence, 50:5-38, 2007.

4. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over extended ER models. In Proc. of ER, 2007.

5. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. J. of Artificial Intelligence Research (JAIR), 36:1-69, 2009.



Alessandro Artale et al. 19

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.
23.
24.
25.
26.
27.

28.

29.

A. Artale and E. Franconi. Foundations of temporal conceptual data models. In
Conceptual Modeling: Foundations and Applications, vol. 5600 of LNCS. 2009.

A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal-
ising tractable description logics. In Proc. of TIME, 2007.

A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. DL-Lite with
temporalised concepts, rigid axioms and roles. In Proc. of FroCoS, 2009.

A. Artale, C. Lutz, and D. Toman. A description logic of change. In Proc. of
IJCAI 2007.

F. Baader, S. Ghilardi, and C. Lutz. LTL over description logic axioms. In Proc.
of KR, 2008.

D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168:70-118, 2005.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39:385-429, 2007.

J. Chomicki and D. Toman. Temporal relational calculus. In Encyclopedia of
Database Systems, pages 3015-3016. Springer, 2009.

M. Chrobak. Finite automata and unary languages. Theor. Comput. Sci., 47:149—
158, 1986.

C. Date, H. Darwen, and N. Lorentzos. Temporal Data and the Relational Model.
Morgan Kaufmann, 2002.

M. Finger and P. McBrien. Temporal conceptual-level databases. In Temporal
Logics—Mathematical Foundations and Computational Aspects. Oxford University
Press, 2000.

D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Elsevier, 2003.

H. Gregersen and J. Jensen. Temporal Entity-Relationship models—a survey.
IEEE TKDE, 11, 1999.

G. Hall and R. Gupta. Modeling transition. In Proc. of ICDE, 1991.

C. Jensen and R. Snodgrass. Temporally enhanced database design. In Advances
in Object-Oriented Data Modeling. MIT Press, 2000.

C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey.
In Proc. of TIME, 2008.

P. McBrien, A. Seltveit, and B. Wangler. An Entity-Relationship model extended
to describe historical information. In Proc. of CISMOD, 1992.

A. Mendelzon, T. Milo, and E. Waller. Object migration. In Proc. of PODS, 1994.
K. Schild. Combining terminological logics with tense logic. Proc. of EPIA, 1993.
S. Spaccapietra, C. Parent, and E. Zimanyi. Conceptual Modeling for Traditional
and Spatio-Temporal Applications—The MADS Approach. Springer, 2006.

J. Su. Dynamic constraints and object migration. Theoretical Computer Science,
184:195-236, 1997.

B. Tauzovich. Towards temporal extensions to the entity-relationship model. In
Proc. of ER. Springer, 1991.

C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling formal-
ism for temporal database applications. Information Systems, 16:401-416, 1991.
A. To. Unary finite automata vs. arithmetic progressions. Inf. Process. Lett.,
109:1010-1014, 2009.



Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

MASTRO at Work: Experiences on
Ontology-based Data Access

Domenico Fabio Savo!, Domenico Lembo', Maurizio Lenzerini!,
Antonella Poggi', Mariano Rodriguez-Muro?, Vittorio Romagnoli?,
Marco Ruzzil, Gabriele Stella®

1 SAPIENZA Universita 2 Free University of 3 Banca Monte dei
di Roma Bozen-Bolzano Paschi di Siena
lastname @dis.uniromal .it rodriguez @inf.unibz.it firstname.lastname @banca.mps.it

Abstract. We report on an experimentation of Ontology-based Data Access
(OBDA) carried out in a joint project with SAPIENZA University of Rome,
Free University of Bolzano, and Monte dei Paschi di Siena (MPS), where we
used MASTRO for accessing, by means of an ontology, a set of data sources of
the actual MPS data repository. By both looking at these sources, and by in-
terviews with domain experts, we designed both the ontology representing the
conceptual model of the domain, and the mappings between the ontology and the
sources. The project confirmed the importance of several distinguished features
of DL-Lite 4,14 to express the ontology and has shown very good performance of
the MASTRO system in all the reasoning tasks, including query answering, which
is the most important service required in the application.

1 Introduction

While the amount of data stored in current information systems continuously grows,
turning these data into information is still one of the most challenging tasks for Infor-
mation Technology. The task is complicated by the proliferation of data sources both in
single organizations, and in open environments. Specifically, the information systems
of medium and large organizations are typically constituted by several, independent,
and distributed data sources, and this poses great difficulties with respect to the goal of
accessing data in a unified and coherent way. Such a unified access is crucial for getting
useful information out of the system, as well as for taking decision based on them. This
explains why organizations spend a great deal of time and money for the understanding,
the governance, the curation, and the integration of data stored in different sources [7].

The following are some of the reasons why a unified access to data sources is prob-
lematic.

— Despite the fact that the initial design of a collection of data sources (e.g., a
database) is adequate, corrective maintenance actions tend to re-shape the data
sources into a form that often diverges from the original conceptual structure.

— It is common practice to change a data repository so as to adapt it both to spe-
cific application-dependent needs, and to new requirements. The result is that data
sources often become data structures coupled to a specific application (or, a class
of applications), rather than application-independent databases.

20
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— The data stored in different sources tend to be redundant, and mutually inconsistent,
mainly because of the lack of central, coherent and unified data management tasks.

In principle, there are two alternative solutions to the above problems. One solution
is the re-engineering of the information system, i.e., the design of a new, coherent, and
unified data repository serving all the applications of the organization [8], and replac-
ing the original data sources. This approach is unfeasible in many situations, due to cost
and organization problems. The other solution is to create a new stratum of the infor-
mation system, co-existing with the data sources, according to the “data integration”
paradigm [1]. Such new stratum is constituted by (¢) a global (also called “mediated”)
schema, representing the unified structure presented to the clients, and (i) the mapping
relating the source data with the elements in global schema. There are two methods for
realizing such stratum, called materialized and virtual. In the materialized approach,
called data warehousing, the global schema is populated with concrete data deriving
from the sources. In the virtual approach, data are not moved, and queries posed to the
system are answered by suitably accessing the sources [9]. The latter approach, which
is the one referred to in this work, is preferable in a dynamic scenario, where sources
may be updated frequently, and clients want to use up-to-date information.

In current data integration tools the global schema is expressed in terms of a logical
database model, e.g. the relational data model [1]. It is well-known that the abstractions
and the constructs provided by this kind of data models are influenced by implementa-
tion issues. It follows that the global schema represents a sort of unified data structure
accommodating the various data at the sources, and the client, although freed from
physical aspects of the source data (where they are, and how they can be accessed), is
still exposed to issues concerning how data are packed into specific structures.

To overcome these problems, we recently proposed the notion of ontology-based
data integration, also called ontology-based data access (OBDA) [14,12]", whose ba-
sic idea is to express the global schema as an ontology, i.e., a conceptual specification of
the application domain. With this idea, the integrated view that the system provides to
information consumers is not merely a data structure accommodating the various data
at the sources, but a semantically rich description of the relevant concepts and relation-
ships in the domain of interest, with the mapping acting as the reconciling mechanism
between the conceptual level and the data sources. Besides this characteristic, OBDA
also exploits reasoning on the ontology in computing the answers to queries, thus (at
least partially) overcoming possible incompleteness that may be present in the data.

In this paper we report on an experimentation of OBDA carried out in a joint project
by Banca Monte dei Paschi di Siena (MPS)?, Free University of Bozen-Bolzano, and
SAPIENZA Universita di Roma, where we used MASTRO [13] for accessing, by means
of an ontology, a set of data sources from the actual MPS data repository. MASTRO is an
OBDA system extending the QUONTO? reasoner, which is based on, DL-Lite A1d [2],

! The two terms have very similar meaning. We tend to use the term “ontology-based data inte-
gration” in scenarios where the data sources are heterogenous (i.e., managed by different data
management systems), and distributed, which is not the case in the project described here.

2 MPS is one of the main banks, and the head company of the third banking group in Italy (see
http://english.mps.it/).

http://www.dis.uniromal.it/quonto
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one of the logics of the DL-Lite family [4]. The OBDA scenario refers to a set of 12
relational data sources, collectively containing about 15 million tuples. By both looking
at these sources, and by interviews with domain experts, we designed both the ontol-
ogy representing the conceptual model of the domain, and the mapping between the
ontology and the sources. The ontology comprises 79 concepts and 33 roles, and is ex-
pressed in terms of approximately 600 DL-Lite 4,14 axioms. The relationships between
the ontology and the sources are expressed in terms of about 200 mapping assertions.
The results of the experimentation can be summarized as follows.

1) In the context of the MPS scenario, OBDA has indeed addressed many of the
data access issues mentioned before. The system provides the users with the possibility
of querying the data sources by means of the conceptual model of the domain, and this
opens up the possibility for a variety of users of extracting information from a set of
data sources that previously were accessed through specific applications.

2) The project confirmed the importance of several distinguished features of
DL-Lite 4 14, namely, identification constraints, and epistemic queries. Both features
are missing in the standard ontology language OWL 2. In particular, we believe that
the absence of identification constraints in OWL 2 may hamper the usefulness of such
language in ontology-based data access.

3) MASTRO has shown very good performance in all the reasoning tasks, including
query answering, which is the most important service required in the application. This
has been achieved by specific optimizations designed within this project of the MASTRO
query answering algorithm, in particular concerning the phase of unfolding the query
against the mapping.

4) The experience in this project has shown that OBDA can be used for checking
the quality of data sources. There are basically two kinds of data quality problems that
our system is able to detect, one related to unexpected incompletenesses in the data
sources, and the other one related to inconsistencies present in the data. The OBDA
system designed for the MPS scenario has been able to provide useful information in
order to improve both aspects of data quality.

5) Our work has pointed out the importance of the ontology itself, as a precious
documentation tool for the organization. Indeed, the ontology developed in our project
is adopted in MPS as a specification of the relevant concepts in the organization.

6) The OBDA system serves also as an inspiration for devising new data gover-
nance tasks. Relying on OBDA services, queries such as “how is a certain concept
(e.g., customer) represented in a specific data source (e.g., table GZ0005)?” can now
be answered, simply by exploiting both the ontology and the mappings designed in the
project, and the query reformulation capability of MASTRO.

The paper is organized as follows. Section 2 presents a brief description of MAS-
TRO. Sections 3 illustrates the scenario of our experimentation. Section 4 presents the
ontology and the mapping. Section 5 illustrates the use of MASTRO in the scenario.
Section 6 concludes the paper.

2 The MASTRO system

MASTRO is an OBDA system jointly developed at the SAPIENZA University of
Rome and Free University of Bozen-Bolzano. MASTRO allows for the definition of
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DL-Lite 4,14 [2] ontologies connected through semantic mappings to external indepen-
dent relational databases storing data to be accessed. Thus, differently from other ap-
proaches to ontology definition and reasoning [10,6,11], the extensional level of the
ontology, namely, the instances of concepts and roles, are not explicitly asserted and
possibly managed by a DBMS, but are specified by mapping assertions describing how
they can be retrieved from the data at the sources. In the following we briefly sketch
the architecture of the system, distinguishing between “Ontology Definition Module”,
“Mapping Manager”, “Data Source Manager”, and “Reasoner”.

The Ontology Definition Module provides mechanisms for the specification of the
ontology as a DL-Lite 5 14 TBox. DL-Lite4 14 is a Description Logic (DL) belonging
to the DL-Lite family, which adopts the Unique Name Assumption, and provides all
the constructs of OWL 2 QL?, a tractable profile of OWL 2, plus functionality and
identification assertions, with the limitation that these kind of assertions cannot involve
sub-roles. These last features, while enhancing the expressive power of the logics, do
not endanger the efficiency of both intensional reasoning, and query answering. In other
words, the computational complexity of these tasks is the same as in OWL 2 QL, namely
PTIME with respect to the size of the TBox, and LOGSPACE in the size of the data at
the sources.

The Mapping Manager supports the definition of mapping assertions relating the
data at the sources to the concepts in the ontology. The mapping assertions supported
by MASTRO are a particular form of GAV mappings [9]. More specifically, a mapping
assertion is an expression of the form ) ~» ¢ where v is an arbitrary SQL query over
the database, and ¢ is a DL-Lite 4 14 conjunctive query without existential variables. As
described in [12], data extracted by means of query v are used, together with suitable
Skolem functions, to build the logic terms representing the object identifiers, thus solv-
ing the impedance mismatch problem between data at the sources and instances of the
ontology. The Mapping Manager interacts with the Data Source Manager, which is in
charge of the communication with the underlying relational sources, providing trans-
parent access to a wide range of both commercial and freeware relational DBMSs>.

Finally, the Reasoner exploits both the TBox and the mapping assertions in order to
(i) check the satisfiability of the whole knowledge base, and (i7) compute the answer
to the queries posed by the users. Such module is based on QUONTO, a reasoner for the
DL-Lite family that uses query rewriting as a main processing technique. The two main
run-time services provided by the reasoner are query answering, and consistency check.
The MASTRO process to answer conjunctive queries (CQs) is inspired by the one imple-
mented in the QUONTO system. First, the query posed by the user over the ontology is
reformulated in terms of the inclusion assertions expressed among concepts and roles;
second, such rewriting is unfolded according to the mapping assertions in order to gen-
erate an SQL query which can be directly issued over the relational data source. It can be
shown that the answers to such an SQL query are exactly the answers logically implied
by the whole knowledge base [2]. As a further powerful feature, MASTRO is able to an-
swer EQL (Epistemic Query Language) queries [3], i.e., first-order logic queries over
the ontology interpreted under an epistemic semantics. Finally, MASTRO provides the

‘http://www.w3.org/TR/owl2-profiles/
5 No relational sources can be accesses by means of suitable wrapping tools
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consistency check capability. By virtue of the characteristics of DL-Lite o 14, MASTRO
reduces consistency checking to verifying whether queries generated for disjointness
assertions, functionality assertions, identification constraints and EQL constraints re-
turn an empty result. To this aim, a boolean query is automatically generated for every
such construct and then rewritten, unfolded, and evaluated over the database.

3 Case study: The domain of experimentation

The data of interest in our case study are those exploited by MPS personnel for risk es-
timation in the process of granting credit to bank customers. A customer may be a per-
son, an ordinary company, or an holding company. Customers are ranked with respect
to their credit worthiness, which is established considering various circumstances and
credit/debit positions of customers. In addition to customer information, data of inter-
est regard company groups to which customers belong, and business relations between
bank customers (in particular, fifteen different kinds of such relations are relevant).
Hereinafter, such groups of customers

Wlll be Called Clusters Of Connected Source name [Source Decription Source size
egqe GZ0001 Data on customers 3.463.083

Customers (CCCs). A 15 million tuple  |6zocz  |Data on juridical connections between customers |~ 157.280
. . GZ0003 Data on guarantee connection between customers 1.270.333

database, stored in 12 relational tables GZ0004 Data on economical connections between customers [ 104.033
GZ0005 Data on corporation connections between customers | 1.021.779

managed by the IBM DB2 RDBMS, haS GZ0006 Data on patrimonial connections between customers 809.321
. . GZ0007 Data on company groups 55.362

been used as data source collection in GZ0012 Customers loan information 5.966.948
. . . GZ0015 Data on monitoring and reporting procedures 1.243

the experimentation. Figure 1 shows a  |czoior | Dataon membership of customers into CCCs 2.225.466
GZ0102 Information on CCCs 663.656

summary of the data sources. Such data GZ0104 Data on bank credit coordinators for juridical CCCs 38.457

sources are managed by a specific appli-
cation. The application is in charge of
guaranteeing data integrity (in fact, the
underlying database does not force constraints on data). Not only this application per-
forms various updates, but an automatic procedure is executed on a daily basis to exam-
ine the data collected in the database so as to identify connections between customers
that are relevant for the credit rating calculus. Based on these connections, customers
are grouped together to form CCCs. For each cluster, several data are collected that
characterize the kinds of connections holding among cluster members (i.e., specifying
juridical, economic, or financial aspects of connections).

Data source schemas have undergone many changes in the years, trying to adapt
to the changes in the application. The result is a stratification of the data source which
causes an extended use of control fields, validity flags, and no longer used attributes
in the source schemas. Consequently, an increasing effort for the management of the
data sources is required, which has to be completely entrusted to the management ap-
plications rather than the domain experts. The aim of the experimentation has been to
prove the validity of the OBDA approach in all cases in which companies need to access
efficiently their information assets.

Fig. 1. Data sources

4 Case study: ontology, mapping, and methodology

The process that led us to realize the OBDA system for the MPS case study has been
carried out essentially in two main phases: in the first one, we have developed the on-
tology, whereas in the second one we have specified the mapping between the ontology
and the data sources.
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To be as much independent as possible from the actual source database, in the first
phase we carried out an in-depth analysis of the business domain following a top-down
approach. Therefore, after identifying the central concepts and the main relations be-
tween them, we iteratively refined the ontology, being supported in each development
cycle by the experts from MPS. The top-down approach turned out to be fundamental
for the success of the entire project, since in this way we were able to avoid that the
data model provided by the schema of the data sources could affect the definition of
the ontology, thus achieving complete separation between the conceptual layer and the
logical/physical layer of the system. In fact, further information on the model coming
from the analysis of the sources has been exploited only towards the end of the design
process, in order to refine the realized ontology.

The final ontology comprises 79 concepts, 33 roles, 37 concept attributes, and is
expressed in terms of about 600 DL-Lite 4 ;4 axioms, including 30 identification con-
straints (IDCs), plus 20 EQL constraints (EQLCs). Basically, the ontology is con-
structed around the concepts Customer, CompanyGroup, CCC, and various kinds of
relations existing between customers (cf. Section 3).

In the following, we report on a series of modeling issues we dealt with during
the ontology definition phase. First, we observe that in the domain we have analyzed,
several properties of individuals depend on time. It has been therefore necessary in the
ontology to take trace of the changes of such properties, maintaining the information on
the validity periods associated with each such change. Even though from a very abstract
point of view, such properties might be considered roles or attributes, to properly model
the temporal dimension, each such role or attribute needs to be in fact reified in the
ontology. A timestamp attribute has been associated to each concept introduced by the
reification process, together with a suitable identification constraint ensuring that no
two instances of each such concept refer to the same period of time.

Example 1. The membership of a customer in a cluster of connected customers is a
time-dependent notion which is associated with a validity period. A crucial requirement
is that a customer is not member of two clusters at the same time. In the ontology, this
is modeled by the following assertions.

1. JinGrouping C Customer 6. Grouping C JrelativeT o

2. JdinGrouping~ C Grouping 7. (funct relativeT o)

3. FrelativeT o C Grouping 8. (funct inGrouping™)

4. FrelativeTo” T CCC 9. Grouping C é(timestamp)

5. Grouping C JinGrouping~  10. (id Grouping inGrouping™ , timestamp)
The concept Grouping can be seen as the reification of the notion of membership of a
customer in a CCC. Assertions (1) — (8) realize reification. Assertion (9) imposes that
a timestamp is associated to each instance of Grouping. Finally, assertion (10) is the
IDC imposing that no two distinct instances of Grouping exist that are connected to
the same pair constituted by a value for the attribute timestamp and an object filler
for inGrouping—, thus specifying that a customer is never grouped at the same time in
two CCCs.

Identification constraints turned out to be an essential modeling construct, not only
for correctly modeling the temporal dimension through reification, but also for express-
ing important integrity constraints over the ontology that could not be captured other-
wise, as shown next in Example 2.
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Example 2. Two types of clusters of connected customers are of interest represented by
the concepts Juridical CCC and EconomicCCC, respectively. Consider then the follow-
ing identification constraint on Juridical CCC.

(id Juridical CCC timestamp, relativeTo™ o TactualGrupping o inGrouping™ o
inMembership o ?Holding o hasMembership™)

Such constraint specifies that no two distinct instances of JuridicalCCC exist
that are connected to the same pair constituted by a value for t¢mestamp and
an object filler for the path relativeT o™ o?actualGrupping o inGrouping~ o
inMembershipo?Holding o hasMembership™. Intuitively, the path navigates
through the roles of the ontology, using the construct 7C' to test that the path passes
through instances of C'. Since the role hasMembership is typed in the ontology by
the concept CompanyGroup, the identification constraint actually says that for a certain
timestamp no two juridical CCCs exists that are connected via the above path to the
same company group.

Globally, we have specified more than 30 IDCs in the ontology. None of these
presently correspond to integrity constraints at the data sources. This is because, as it
is usual in practice, very few integrity constraints are explicitly asserted at the sources.
Thus, our ontology plays an important role in representing business rules not explicitly
reflected in the data repository of the organization.

EQLCs turned out to be another important means for correct domain model-
ing. Such constraints indeed permit to overcome some expressiveness limitations of
DL-Lite 4 14, without causing any computational blow up. Indeed, EQLCs are inter-
preted according to a suitable semantic approximation (cf. Section 2). In this experi-
mentation we have heavily used EQLCs to express, e.g., hierarchy completeness and
other important business constraints, otherwise not expressible in our ontology.

Example 3. An important constraint we want to force on the ontology is that for ev-
ery customer which has a guarantor for a loan we have to know the amount of bank
credit provided to the customer. This is specified through the following EQLC, which is
expressed in SparSQL, a query language presented in [5] based on SPARQL and SQL.:

EQLC( verify not exists (
SELECT withGuarantor.cus, withGuarantor.t
FROM spargltable ( SELECT ?cus ?t
WHERE{ ?cus :isLinked ?link.
?link rdf:type ’GuaranteeRelations’.
?link :timestamp ?t}) withGuarantor
WHERE (withGuarantor.cus, withGuarantor.t) NOT IN (
SELECT withCredit.cus, withCredit.t
FROM sparqgltable ( SELECT ?cus ?amnt ?t
WHERE{ ?cus :hasLoan ?loan.
?loan :creditAmount ?amnt.
?loan :timestamp ?t }) withCredit )))

The above constraint says that no customer cus exists, such that cus is connected
to an instance of the concept GuaranteeRelations at the time ¢, and cus has not a
“known” credit Amount at the same time ¢. It is worth noticing that OWL 2, despite
its expressiveness, does not allow for expressing the above constraint.
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Let us now turn our attention to mapping specification. The mapping specifica-
tion phase has required a complete understanding and an in-depth analysis of the data
sources, which highlighted some modeling weaknesses present in the source database
schema: various modifications stratified in the years over the original data schema have
partially transformed the data sources, which now reveal some problems related to re-
dundancy, inconsistency, and incompleteness in the data. Localizing the right data to
be mapped to ontology constructs has thus required the definition of fairly complex
mapping assertions, as shown in Example 4.

Example 4. Consider the following mapping assertion specifying how to construct in-
stances of Juridical CCC using data returned by an SQL query accessing both the table
(GZ0102, which contains information about CCCs, and the table GZ0007, which con-
tains information about the company groups.

SELECT id.cluster, timestamp.val FROM GZ0102, Gz0007

WHERE GZ0102.validity.code = ‘T’ AND GZ01l02.id.cluster <> 0
AND Gz0007.validity-code = ‘T’ AND Gz0007.id_-group <> 0
AND Gz0102.id_cluster = Gz0007.id_group

~  Juridical CCC(cece(id-cluster, timestamp_val))

From the data source analysis it turned out that each CCC that has an iden-
tifier (GZ0102.id_cluster) coinciding with the identifier of a company group
(GZ0007.id_group) is a juridical CCC. Such a property is specified in the SQL query in
the mapping through the join between GZ0102 and GZ0007 (GZ0102.id_cluster =
G Z0007.id_group). Notice that invalid tuples (those with validity_code different from
“T") and meaningless tuples (those with id_cluster or id_group equal zero) are ex-
cluded from the selection. The query returns pairs of id_cluster and timestamp_val,
which are used as arguments of the function cce() to build logic terms representing
objects that are instances of Juridical CCC, according to the method described in [12].

The mapping specification phase has produced around 200 mapping assertions,
many of which are quite involved. Their design has been possible by a deep under-
standing of the tables involved, their attributes, and the values they store. We initially
tried to automate this process with the help of current tools for automatic mapping gen-
eration, but, due to the complexity of extracting the right semantics of the source tables,
we failed. This is in line with our past experience on mapping design: the bulk of the
work in mapping specification has to be essentially carried out manually.

S The system at work

In this section we discuss the actual use of MASTRO in the MPS scenario. As a general
comment, we remark that the OBDA system we designed for this scenario allowed to
overcome many of the data access problems we have discussed in the previous sec-
tions. In particular, querying the data sources through the conceptual view provided
by the ontology enabled various kinds of users, not necessarily experts of the appli-
cation managing data at the sources, to profitably access such data. In what follows,
we concentrate on two crucial aspects of our experience: the use we made of MASTRO
to check the quality of the data sources, and the impact that certain characteristics of
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the MPS scenario have had on the evolution of the system in terms of its tuning and
optimizations.

As mentioned in the introduction, we faced two main issues concerning the quality
of the data sources, namely incompleteness and inconsistency in the data at the sources.
Detecting data incompleteness has been possible by exploiting the MASTRO query an-
swering services, and more precisely, by inspecting the rewriting and the unfolding that
MASTRO produces in the query answering process. Let us see this on an example. To re-
trieve from the data sources the identification codes of all company groups, MPS opera-
tors simply use a single SQL query projecting out the 1d_code from the table GZ0007,
which contains information about company groups. Surprisingly, using the ontology to
obtain all company codes, we actually get a larger answer set, by posing over the ontol-
ogy the obvious corresponding query ¢(y) <« CompanyGroup(z),id_code(z,y). The
reason for such a difference in the answers resides in the fact that the query that MAS-
TRO asks to the source database, and that is automatically produced by the rewriting and
unfolding procedures of MASTRO, is much more complex than the query used by the
MPS operators. By reasoning over the ontology, and exploiting the mapping assertions,
MASTRO accesses all the source tables that store codes of company groups, and this
set of tables does not in fact contain only the codes of company groups that occur in
table GZ0007. Such a result showed that some foreign key dependencies constraining
the identification codes stored in the table GZ0007 were in fact missing in the source
database, and that such a table should not been considered complete with respect to
such information.

We turn now to data inconsistency issues. In DL-Lite 4 14, inconsistencies are caused
by data that violate the assertions of the ontology, specifically disjointness assertions,
functionality constraints, identification constraints, and EQL constraints. Also, causes
of inconsistencies can be easily localized by retrieving the minimal set of data that
produce each single violation. We actually modified the classical consistency check of
MASTRO in order to identify the offending data, in particular exploiting the feature of
answering EQL queries (cf. Section 2) and their ability to express negation. Consider
for example the relation linkedT o, which is declared to be inverse functional (i.e.,
(funct linkedT o™ )). In order to detect the violation of such constraint and the guilty
data, we use the following EQL query:

SELECT testview.l, testview.cl, testview.c2
FROM sparqgltable (SELECT 2?1 ?cl ?c2

WHERE{?cl:linkedTo?l. ?c2:1linkedTo?l}) testview
WHERE testview.cl <> testview.c2

Switching our attention to the performance of the system, there are two sources of
complexity to be considered in the query answering and consistency checking services
provided in MASTRO, the query reformulation and query unfolding procedures. Refor-
mulation introduces complexity since it may produce an exponential number of queries
to be answered. Nevertheless, in the case of the MPS ontology, this potential drawback
did not occur. Indeed, in most cases, the number of queries produced by this step was
small (between 1 and 25). In contrast, the query unfolding step presented challenges
that led to several important improvements in MASTRO, briefly discussed below.

In complex scenarios, such as the one we considered in our experimentation, we
found that the most critical aspect for performance is what we call query structure, i.e.,
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the form of the SQL queries issued to the source database. Query structure is character-
ized by the specific technique used to produce SQL queries out of queries formulated
over TBox predicates (7 -predicates).

In MASTRO, query unfolding is based on the use of SQL views over the source
database. More specifically, the mapping is first pre-processed so as to have only as-
sertions in which the query over the ontology contains just one predicate (splitting).
Then, all assertions referring to the same 7 -predicate are combined together in order to
have one SQL view, which we call 7 -view, for each predicate. Essentially, the view is
obtained taking the union of the SQL queries occurring in the left-hand side of the as-
sertions, and pushing the construction of logic terms representing instances of concepts
and roles in the view itself. Unfolding a query specified over 7 -predicates amounts
therefore to simply unfold each query atom with the corresponding 7 -view. For exam-
ple, if the split mapping assertions for the role linkedTo are

mi: SELECT .... WHERE cd._tp = 503 ~» linkedT o(cus(idcus), link(linkid))
mgo: SELECT .... WHERE cd_tp = 501 ~ linkedTo(cus(idcus), link(linkid))

then, the following view, 1 inkedto_Tview, is associated to the linkedTo predicate:

SELECT ‘cus(’||idcus|| ')’ as terml, ‘link(’||linkid]| ]| ')’ as term2

FROM (SELECT .... WHERE cd.tp = 503) viewml

UNION

SELECT ‘cus’ (| |idcus| | ')’ as terml, ‘link(’||linkid]|| ')’ as term2
FROM (SELECT .... WHERE cd_-tp = 501) viewm2

Notice that in the SELECT clause we build logical terms by means of simple SQL string
concatenation operations, indicated with the | | operator. Then, the query ¢(X) «
linkedTo(X,Y) is unfolded into SELECT terml FROM linkedto_Tview.

Despite its simplicity, we found out that, in scenarios characterized by a high vol-
ume of data and complex and numerous mapping assertions, this approach fail, due to
low performance of the generated queries. For example, in our test cases, queries with
a single atom that involve database relations with high volume of data often required
several minutes to be answered. More complex queries, with more than 2 atoms and
involving also big relations, would often require hours or would even not terminate.
The reason for this bad performance is in the limitations of DBMS query planners in
handling subqueries in the FROM clause, and joins between terms representing objects,
rather than directly on database values. What we observed is that, in order to deal with
subqueries, query planners rely on a process called query flattening, in which the query
planner attempts to rephrase a query with subqueries into a new query with no sub-
queries. If the query planner is not successful in this attempt, e.g., due to the complex-
ity of the subqueries, it will resort to subquery materialization, an extremely expensive
operation when the volume of data is high.

In order to avoid materialization and joins between object terms, and in general, to
increase the chances of the query planner to produce a good plan, we devised a strategy
that led us to produce queries that are as simple as possible with respect to subqueries.
This led us to adopt what we call an M-view approach to unfolding. In this approach,
we build simpler views, one for each SQL query in the split mapping assertions, and
we associate all of them to the corresponding 7 -predicate. For example, in the previous
case we would define the two views below
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viewml = SELECT .... WHERE cd_.tp = 503
viewm2 = SELECT .... WHERE cd_tp = 501

and the unfolding of the query ¢(X) « linkedTo(X,Y’) would be as follows

SELECT ‘cus(’||idcus|| ‘)’ FROM view.ml
UNION
SELECT ‘cus(’||idcus|| ')’ FROM view.m2

Notice that in this case, the construction of the object term ‘cus (’ | | idcus| | ‘)’
is in the external SELECT clause and is not pushed into the views in the FROM clause.

What is important to note here is the exchange of simplicity of the unfolding pro-
cedure for simplicity of the structure of the queries being generated (i.e., less nesting
in the subqueries) and a new exponential growth in the amount of queries sent to the
database, e.g., now for every linkedT o atom in a query, we will produce an SQL query
taking the union of at least two queries, one where we only use view_ml and one with
view.m2. Although this growth could seem problematic, we have found that the in-
crease in the performance of executing each individual query pays off the increase in
the number of queries to be executed. Moreover, since these queries are independent,
we can use parallelism in query execution to improve performance even more.
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Fig. 2. M-views vs. 7 -views using an execution timeout of lhr.

To give an idea of the effectiveness of the described optimizations, we present in Figure
2 the data about the execution of a collection of 8 representative queries (the units of the
vertical axis are seconds). These queries are all of interest to MPS, and challenging in
terms of number of atoms, complexity of the unfolding and the volume of data accessed.

6 Conclusions

From the point of view of MPS, the project has provided very useful results in various
areas of interest:

— Data integration, providing the capability of accessing application data in a uni-
fied way, by means of queries written at a logical/conceptual level by end-users not
necessarily acquainted with the characteristics of the application;

— Database quality improvement, providing tools for monitoring the actual quality
of the database, both at an intensional and an extensional level;

— Knowledge sharing, providing, with the ontology-based representation of the ap-
plication domain, an efficient means of communicating and sharing knowledge and
information throughout the company.

The plan is to continue the experience by extending the work to other MPS appli-
cations, with the idea that the ontology-based approach could result in a basic step for
the future IT architecture evolution, oriented towards Service-oriented architectures and
Business Process Management.



Domenico Fabio Savo, et al. 31

References

1.

2.

10.

11.

12.

13.

14.

P. A. Bernstein and L. Haas. Information integration in the enterprise. Comm. of the ACM,
51(9):72-79, 2008.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, and
R. Rosati. Ontologies and databases: The DL-Lite approach. In S. Tessaris and E. Fran-
coni, editors, Reasoning Web Summer School 2009, volume 5689 of LNCS, pages 255-356.
Springer, 2009.

. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite: Effective

first-order query processing in description logics. In Proc. of IJCAI 2007, pages 274-279,
2007.

. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385-429, 2007.

. C. Corona, E. D. Pasquale, A. Poggi, M. Ruzzi, and D. F. Savo. When OWL met DL-Lite...

In SWAP-08, 2008.

. J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schonberg, K. Srinivas, and X. Sun. Scalable

grounded conjunctive query evaluation over large and expressive knowledge bases. In Proc.
of ISWC 2008, volume 5318 of LNCS, pages 403—418. Springer, 2008.

. L. M. Haas. Beauty and the beast: The theory and practice of information integration. In

Proc. of ICDT 2007, volume 4353 of LNCS, pages 28—43. Springer, 2007.

. J. Henrard, D. Roland, A. Cleve, and J.-L. Hainaut. Large-scale data reengineering: Re-

turn from experience. In WCRE ’08: Proceedings of the 2008 15th Working Conference on
Reverse Engineering, pages 305-308. IEEE Computer Society, 2008.

. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages

233-246, 2002.

C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description logic ££
using a relational database system. In Proc. of IJCAI 2009, pages 2070-2075, 2009.

H. Pérez-Urbina, B. Motik, and 1. Horrocks. Tractable query answering and rewriting under
description logic constraints. J. of Applied Logic, 2009. To appear.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133-173, 2008.

A. Poggi, M. Rodriguez, and M. Ruzzi. Ontology-based database access with DIG-Mastro
and the OBDA Plugin for Protégé. In K. Clark and P. F. Patel-Schneider, editors, Proc. of
OWLED 2008 DC, 2008.

M. Rodriguez-Muro, L. Lubyte, and D. Calvanese. Realizing ontology based data access: A
plug-in for Protégé. In Proc. of IIMAS 2008, pages 286-289. IEEE CS Press, 2008.



Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

Justification Masking in OWL
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Abstract. This paper presents a discussion on the phenomena of mask-
ing in the context of justifications for entailments. Various types of mask-
ing are introduced and a definition for each type is given.

1 Introduction

Many open source and commercial ontology development tools such as Protégé-
4, Swoop, The NeOn Toolkit and Top Braid Composer use justifications [5] as
a kind of explanation for entailments in ontologies. A justification for an entail-
ment, also known as a MinA [1,2], or a MUPS [11] if specific to explaining why
a class name is unsatisfiable, is a minimal subset of an ontology that is sufficient
for the given entailment to hold. More precisely, a justification is taken to be a
subset minimal set of axioms that supports an entailment. Justifications are a
popular in the OWL world and, as the widespread tooling support shows, have
been used in preference to full blown proofs for explaining why an entailment
follows from a set of axioms.

However, despite the popularity of justifications, they suffer from several
problems. Some of these problems, namely issues arising from the potential su-
perfluity of axioms in justifications, were highlighted in [3]. Specifically, while all
of the axioms in a justification are needed to support the entailment in question,
there may be parts of these axioms that are not required for the entailment to
hold. For example, consider J = {A C 3R.B, Domain(R,C),C C DM E} which
entails A C D. While J is a justification for A C D, and all azioms are required
to support this entailment, there are parts of these axioms that are superfluous
as far as the entailment is concerned: In the first axiom the filler of the existential
restriction is superfluous, in the third axiom the conjunct E is superfluous for
the entailment.

An important phenomenon related to superfluity has become known as justi-
fication masking. Recalling that there may be several justifications for an entail-
ment, which may but do not have to overlap, masking refers to the case where the
number of justifications for an entailment does not reflect the number of reasons
for that entailment. For example, consider 7 = {A C IR.CNVR.C, D = 3R.C}
which entails A C D. Clearly, J is a justification for A C D. It is also noticeable
that there are superfluous parts in this justification. Moreover, there are two dis-
tinct reasons why J = A C D, the first being {A C 3R.C,3R.C C D} and the
second being {A C IR. T MVR.C,3IR.C C D}. The work presented in the paper
describes how masking can occur within a justification, over a set of justifica-
tions, and over a set of justifications and axioms outside justifications. The main
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problems identified with masking are (i) it can hamper understanding—mnot all
reasons for an entailment may be salient to a person trying to understand the
entailment, and (ii) it can hamper the design or choice of a repair plan—not all
reasons for an entailment may be obvious, and if the plan consists of weakening
and removing parts of axioms it may not actually result in a successful repair of
the ontology in question.

In [3] laconic and precise justifications were presented as a tool for deal-
ing with the problems of superfluity and masking. However, while the basic
intuitions of masking were presented in [3], and it was shown that laconic jus-
tifications could be used as a tool for working with masking, only two types of
masking where discussed. This paper presents a comprehensive analysis of the
different types of masking, provides a characterisation of masking, and lays down
definitions and an analysis for the various types of masking.

2 Preliminaries

The work presented in this paper focuses on OWL 2. OWL 2 [8] is the latest
standard in ontology languages from the World Wide Web Consortium. An OWL
2 ontology roughly corresponds to a SROZQ(D) [4] knowledge base. For the
purposes of this paper, an ontology is regarded as a finite set of SROZQ axioms
{ag,...,a,}. An axiom is of the form of C' C D or C = D, where C and D are
(possibly complex) concept descriptions, or S C R or S = R where S and R are
(possibly inverse or complex) roles.

It should be noted that OWL contains a significant amount of syntactic sugar,
such as DisjointClasses(C, D), FunctionalObjectProperty(R) or Domain(R, C).
However, these axioms can be represented using sub-class and sub-property ax-
ioms.

Justifications are a popular form of explanation in the OWL world. A jus-
tification for an entailment 7 in an ontology O, such that O = 7 is a minimal
subset of that entails 7.

Definition 1 (Justification). J is a justification for O =n if 7 C O, J En
and for all 7' C T J' 0.

By a slight abuse of notation, the nomenclature used in this paper also refers
to a minimally entailing set of axioms (that is not necessarily a subset of an
ontology) as a justification.

Much of the work presented in the remainder of the paper uses the “well
known” structural transformation — ¢. This transformation takes a set of axioms
and flattens out each axiom by introducing names for sub-concepts, transforming
the axioms into an equi-satisfiable set of axioms. The structural transformation
was first described in Plaisted and Greenbaum [10], with a version of the rewrite
rules for description logics given in [9].

In what follows, A is the ABox of an ontology, R is the RoleBox, and 7
is the TBox. A is an atomic concept in the signature of O, Ap and A, are
fresh concept names that are not in the signature of 0. C; and D are arbitrary
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concepts, excluding T, L and literals of the form X or =X where X is not in the
signature of O, C is a possibly empty disjunction of arbitrary concepts. C = D
is syntactic sugar for C C D and D C C, as is =nR.D for >nR.D N <nR.D.
Domain and range axioms are GCIs so that Domain(R,C) means IR.T C C,
and Range(R,C) means T C VR.C. The negation normal form of D is nnf(D).
The structural transformation § is defined as follows:

5(0

§(D(a)
s(TCCuD
§(TC CU3R.D
§(TC CUVR.D

) = Uaerua 9(@) UlUc,co,er 6(T Cnnf(=C1 L C2))
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The transformation ensures that concept names that are in the signature of
O only appear in axioms of the form X C A or X C —A, where X is some
concept name not occurring in the signature of O. Note that the structural
transformation does not use structure sharing. For example, given T C CU3R.C,
two new names are introduced, one for each use of C, to give {T C X UX;, Xo C
C, X; C 3R.X5, Xo C C}. The preclusion of structure sharing ensures that the
different positions of C' are captured.

The definition of laconic justifications uses the notion of the length of an
axiom. Length is defined as follows: For X, Y a pair of concepts or roles, A a
concept name, and R a role, the length of an axiom is defined as follows:

(X EY|:=|X[+[Y], [X=Y][:=2(X[+][Y]),

where
ITI=|L|:=0,
|Al = [{i}| = |R| = |R"| =1,
~C| = C|

|[CD|=|CUD|:=|C|+|D|
|[3R.C| = |VR.C| =| > nR.C| =| < nR.C|:= |R| +|C]

It should be noted that this definition is slightly different from the usual
definition, but it allows cardinality axioms such as A C < 2R.C to be weakened
to A C < 3R.C without increasing the length of the axiom.

In what follows the standard definition of deductive closure is used, and O*
is used to denote the deductive closure of O.

Definition 2. J is a laconic justification for n over O if:
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1. J is a justification in OF.

2. 6(7) is a justification in (6(O))*

3. For each o € §(J) there is no & such that
(a) o is weaker than a (o = o but o' = «)
(b) |o'| <o
(c) (6(T)\{a})Ud(e) is a justification forn

Intuitively, a laconic justification is a justification whose axioms do not contain
any superfluous parts and all of whose parts are are weak as possible.

3 Intuitions about Masking

The basic notion of masking is that when taken on their own, the weakest parts
of axioms in a justification may combine together with other parts of axioms
within the justification or external to the justification to reveal further reasons
that are not directly represented by the set of regular justifications, and do not
directly have a one-to-one “correspondence” with the set of regular justifications.

We define four important types of masking: Internal Masking, Cross Mask-
ing, External Masking and Shared Cores. The intuitions behind these types of
masking are explained below.

Internal Masking Internal masking refers to the phenomena where there are
multiple reasons within a single justification as to why the entailment in question
holds. An example of internal masking is shown below.

O={ACBN-BNCN-C}=ALC L

There is a single regular justification for O | A C 1, namely O itself. However,
within this justification there are, intuitively, two reasons as to why O = AC L,
the first being {A C BN B} and the second being {A C C 1 -C}.

Cross Masking Intuitively, cross masking is present within a set of justifica-
tions for an entailment when parts of axioms from one justification combine with
parts of axioms from another justification in the set to produce new reasons for
the given entailment. For example, consider the following ontology.

O={ACBN-BNC
ACDN-DN-C}EALC L

There are two justifications for O = A C 1, namely J3 = {A C BN -BnNcC}
and Jo» = {A C DN—-DMN-C}. However, part of the axiom in J;, namely A C C
may combine with part of the axiom in J5, namely A C —=C' to produce a further
reason: J3 = {AC C,AC —-C}.
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External Masking While internal masking and cross masking take place over a
set of “regular” justifications for an entailment, external masking involves parts
of axioms from a regular justification combining with parts of axioms from an
ontology (intuitively the axioms outside of the set of regular justifications) to
produce further reasons for the entailment in question. Consider the example
below,

O:{AEBH—\BHC
AC-C}EACL

There is just one justification for O = A C 1, however, although A C —-C
intuitively plays a part in the unsatisfiability of A it will never appear in a
justification for O = A C L. When O is taken into consideration, there are two
salient reasons for A C L, the first being {A C B M —B} and the second being
{ACC,AC -C}

Shared Core Masking Finally, two justifications share a core if after stripping
away the superfluous parts of axioms in each justification the justifications are
essentially structurally equal. Consider the example below,

O={ACBN-BNC
ACBMN-B}EALC L

There are two justifications for O =n, J1 = {AC BM—-BMNC}and Jo ={ALC
Bm—-B}. However, J; can be reduced to the laconic justification {A C BM—B}
(since C is irrelevant for the entailment), which is structurally equal to J5. With
regular justifications, it appears that there are more reasons for the entailment,
when in fact each justification boils down to the same reason.

3.1 Masking Due to Weakening

The above intuitions have been illustrated using simple propositional examples.
However, it is important to realise that masking is not just concerned with
boolean parts of axioms. Weakest parts of axioms must also be taken into con-
sideration. For example, consider

O={AC >2RC
AC >1R.D
CC-D}=AC>2R

There is one regular justification for O = A C > 2R namely, /3 = {A C
> 2R.C}. However, there are intuitively two reasons for this entailment. The
first is described by the justification obtained as a weakening of Ji, and is
J2 = {A C > 2.R}. The second is obtained by weakening the first axiom in O and
combining it with the second and third axioms in O to give {AC > 1R.C,AC
>1R.D,C C —-D}.

Of course, masking due to weakening can occur in internal masking, cross
masking, external masking and shared cores.
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3.2 Summary on Intuitions

As can be seen from the above examples, the basic idea is that when the weakest
parts of axioms in a justification, set of justifications or an ontology are taken into
consideration, there can be multiple reasons for an entailment that are otherwise
not exposed with regular justifications. These reasons take the form of laconic
justifications—justifications whose axioms do not contain any superfluous parts
and whose parts are as weak as possible. With internal masking, cross masking
and external masking, there are more laconic justifications (by some measure)
than there are regular justifications. With shared cores there are fewer laconic
justifications (by some measure) than there are regular justifications.

3.3 Detecting Masking

Given the above link between masking, weakest parts of axioms and laconic
justifications, it may seem fruitful to use laconic justifications as a mechanism
for detecting masking. Specifically, it may seem like a good idea to count laconic
justifications for the entailment in question. However, this is a flawed intuition
and several problems prevent laconic justification counting being used directly
as a masking detection mechanism. We begin by noting that there may be an
infinite number of laconic justifications for an entailment.

Lemma 1 (Number of Laconic Justifications). Let S be a set of SROZQ
azioms such that S |=n. In general, there may be an infinite number of laconic
Justifications over S for S |= 1.

Proof: Consider an ontology O such that O = A C L. Since laconic justifications
may be drawn from the deductive closure of an ontology it is possible to construct
an infinite set of justifications for the unsatisfiability of A of the form {4 C
>nRT,AC < (n—1)R.T.

The Promiscuity of the Deductive Closure The first problem is that, in
general, there can be an infinite number of laconic justifications for a given en-
tailment (Lemma 1). The notion of counting the number of laconic justifications
over a set of axioms and comparing this to the number of regular justifications
over the same set of axioms is therefore useless when it comes to detecting and
defining masking. Even if the logic used did not result in an infinite number of la-
conic justifications, the effects of splitting and syntactic equivalence could result
in miscounting. For example, consider J; = {A C BMNC, BNC C D}, where [J; is
in itself laconic, however another justification Jo = {AC B,AC C,BMNC C D}
can be obtained, which is also laconic. Clearly, masking is not present in J7, but
there are more laconic justifications than there are regular justifications.

Preferred Laconic Justifications Another approach might be to count the
number of preferred laconic justifications, which are laconic justifications that
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are made up of axioms which come from a filter on the deductive closure of
a set of axioms. The notion of preferred laconic justifications was introduced
in [3], where a filter called OV is used to compute justifications that bear a
syntactic resemblance to the axioms from which they are derived. Unfortunately,
this idea is sensitive to the definition of the filter. Different filters, for different
applications, may give different answers and false positives. While a particular
filter could be verified to behave correctly and perhaps be used as an optimisation
for detecting masking in an implementation, this mechanism is not appropriate
for defining masking.

Preservation of Positional Information Another problem is that struc-
tural information can be lost with laconic justifications. Consider the {A C
B (CNB)} as a justification for A C B. Masking is clearly present within
this justification. If Baqi denotes the first occurrence of B, and Bgas denotes
the second occurrence of B then A is a subclass of B because of two reasons:
A C Bai and A C Bas. However, this positional information is lost in all laconic
justifications for A C B. In essence, syntax is crucial when it comes to masking.

Splitting is Not Enough While syntax is very important when considering
masking, it does not suffice to consider syntax alone. The example of masking
due to weakening shows that simply splitting a set of axioms S into their con-
stituent parts, using the structural transformation §(S), and then examining the
justifications for the entailment with respect §(S) is not enough to capture this
notion of masking. Weakenings of the split axioms must be considered in any
mechanism that is used to detect masking.

4 Masking Defined

With the above intuitions and desiderata in mind the notion of masking can be
made more concrete. The basic idea is to pull apart the axioms in a justification,
set of justifications and an ontology, compute constrained weakenings of these
parts (inline with the definition of laconic justifications), and then to check
for the presence and number of laconic justifications within the set of regular
justifications for an entailment with respect to these parts and their weakenings.

4.1 Parts and Their Weakenings

We first define a function 61 (S), which maps a set of axioms S to a set of axioms
composed from the union of §(S) with the constrained weakenings of axioms in
0(8). The weakenings of axioms is constrained in that for an axiom « € §(S), a
weakening o’ of « is contained in 67 (S) only if o’ is no longer than a—i.e. the
weakening does not introduce any extra parts.

Definition 3 (67). For a set of SROZQ azioms, S,
§T(8) :==68(S)U{d | Fa € d(S) s.t. a =ad and o' =« and |6(a)| = 1)}
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Lemma 2 (§tjustificatory finiteness). For a finite set of azioms S, the set
of justifications for an entailment in 5% (8S) is finite.

Proof: §7(S) is composed of the set of axioms in §(S), which is finite, plus a
possibly infinite set of axioms taken from the deductive closure of each aziom in
0(S). For a SROZQ axiom a, every axiom o’ in 6(«) must either be one of the
following forms:

TCX;UX,
X;CA

X, C-A

X; CIR.X;
X, CVYR.X;
X; C {o}

X; C JR.Self
X; C > nR.X,

in which case the set of axioms in §+(«) is finite since the set of weakenings (in
accordance with the definition of ) of ' is finite. Or, o is of the form:

in which case there is an infinite number of weakenings of o/ in §*(a) since
AC< (n+1)R.C is weaker than A C< nR.C for any n > 0. If justifications are
made up solely of the axioms of the form corresponding to the first set then the
set of justifications is clearly finite. If justifications contain axioms of the second
form X; & <nR.X; then there is a finite upper bound m for n, where there are
no justifications containing an axiom of the from X; C < kR.X; for some k > m.
This is because, for values of k, where k is equal to the maximum number in <
restrictions in the closure of S, or more, X; & < kR.X; is too weak to participate
in a justification, and this follows as a straight forward consequence of SROZQ’s
model theory [4]. O

Next, a function which filters out laconic justifications for an entailment from
a set of justifications for the entailment is defined:

Definition 4 (Laconic Filtering). For a set of azioms S = n, laconic(S,n)
is the set of justifications for S |=n that are laconic over S.

Notice that because of Lemma 2, the set of justifications laconic(S,7) is finite.

4.2 Masking Definitions

With the definition of §* and the definition of laconic filtering in hand, the
various types of masking can now be defined.
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Definition 5 (Internal Masking). For a justification J for O |= n, internal
masking is present within J if

|laconic(67(T),n)| > 1

Lemma 3. Internal masking is not present within a laconic justification.

Proof: Assume that J is a laconic justification for n and that internal masking
is present within 7. This means that there either must be (i) at least two laconic
justifications for 67 (J) = 0, i.e. there exists some J1,Jo S 67 (J) where J; #
J2 and are both laconic. However, since J itself is laconic this violates condition
2 of Definition 2, or (ii) there is a non-length increasing weakening of one or
more axioms in 6(J) that yields §(7)’. However since J is laconic this violates
conditions 3a and 3b of Definition 2. a

Let O En and J1,...,J, be the set of all justifications for O = 7. Cross
masking and External masking are then defined as follows:

Definition 6 (Cross Masking). For two justifications J; and J;, cross mask-
ing is present within J; and J; if

|laconic(5+($ U %),n)‘ > (’lacom’c(é*(ji),nﬂ + ’lacom’c(é*(jj),nﬂ)
Definition 7 (External Masking). Ezxternal masking is present if

i=n

|laconic(67(0),n)| > |lacom’c(5+(U Ji):n)|
i=1
Definition 8 (Shared Cores). Two justifications J; and J; for O |=n, share
a core if there is a justification J € laconic(67(J;),n) and a justification J; €
laconic(0*(J;),m) and a renaming p of terms not in O such that p(J}) = Jj.

5 Examples

The issue of masking is indeed a real world problem with realistic ontologies. For
example, external masking is present in the DOLCE ontology. The entailment
quale C region has a single justification:

{quale = region M 3 atomicPartOf.region}

However, there are further justifications that are externally masked by this reg-
ular justification. There are three laconic justifications, the first being

{quale C region}

which is directly obtained as a weaker form of the regular justification. More
interestingly, there are two additional laconic justifications:

{quale C JatomicPartOf .region
atomicPartOf C partOf

partOf C part™

region C Vpart.region}
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and also

{quale C atomicPartOf.region
atomicPartOf C atomicPart™
atomicPart C part
region C Vpart.region}

Both of these justifications represent reasons for the entailment which are never
seen with regular justifications due to the presence of external masking.

A real ontology about pathway interactions' contains an unsatisfiable class
called “Phosphate Acceptor”. There are 32 regular justifications for this class
being unsatisfiable. However, upon examination, these 32 justifications share a
single core. When trying to understand the reason for the unsatisfiable class, the
succinctness of the core provides a dramatic improvement in terms of usability.

6 Implementation Issues

The main focus of this paper has been to pin down the notions and types of
masking. At this stage no attention has been paid to the practicalities of detec-
tion masking. However, the definitions for the various types of masking make
use of the well known structural transformation —d¢+ must be computed from
6. Naturally, this raises the question of performance and scalability, since many
reasoners rely on the structure of axioms in real world ontologies for several
key optimisations. Normalising the axioms in an ontology using the structural
transformation, i.e. converting axioms to clausal form, raises the possibility of
negating these optimisations. While more investigation work needs to be done,
some preliminary experiments indicate that it is feasible to detect internal mask-
ing and cross masking. It is expected that an algorithm that transforms an on-
tology in an incremental manner, using techniques similar to those presented in
[3] for computing laconic justifications, could provide a practical mechanism for
detecting external masking.

7 Related Work

Various groups [6, 7, 11] have concentrated their efforts on what can be thought
of as fine-grained justifications. In particular, Kalyanpur et al. [6,5] presented
work on fine-grained justifications, where axioms were split into smaller axioms
in order to obtain a more “precise” justification. This work discusses the reasons
for fine-grained justifications, one of which corresponds to the notion of external
masking presented here. However, no precise definitions of masking were given
in this work.

L http://owl.cs.manchester.ac.uk/repository/download?ontology=http://purl.org/NET /biopax-
obo/examples/reaction.owl (courtesy Alan Ruttenberg)
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Conclusions

This paper has presented a discussion on the phenomenon of justification mask-
ing. The notion and types of masking have been discussed and defined. These
definitions basically identify the parts of axioms in a justification, over a set of
justifications and an ontology, weaken the parts and then look for the number of
laconic justifications that are present in the set of justifications over the axioms
that represent these weakened parts.
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1 Introduction

The well-known description logic (DL) ALC is usually regarded as the basic DL that
comprises all Boolean concept constructors and from which all expressive DLs are de-
rived by admitting additional concept constructors. The fundamental role of ALC is
largely due to the fact that it is very well-behaved regarding its logical, model-theoretic,
and computational properties. This good behavior can, in turn, be explained nicely by
the fact that ALC-concepts can be characterized exactly as the bisimulation invariant
fragment of first-order logic (FO) in the sense that an FO formula is invariant under
bisimulation if, and only if, it is equivalent to an ALC-concept [22, 13, 16]. In particu-
lar, invariance under bisimulation explains the tree-model property of ALC as well as
its favorable computational properties [24]. In the mentioned characterization, the con-
dition that ALC is a fragment of FO is much less important than its bisimulation invari-
ance. In fact, ALCp, the extension of ALC with fixpoint operators, is not a fragment
of FO, but inherits almost all important properties of ALC [8, 12]. Similar to ALC,
ALCp’s fundamental role (in particular in its formulation as the modal mu-calculus)
can be explained by the fact that ALCpu-concepts can be characterized exactly as the
bisimulation invariant fragment of monadic second-order logic (MSO) [14, 8]. Indeed,
from a purely theoretical viewpoint it is hard to explain why ALC rather than ALCp
forms the logical underpinning of current ontology language standards; the facts that
mu-calculus concepts can be hard to grasp and that, despite the same theoretical com-
plexity, efficient reasoning in ALCp is more challenging than in ALC are probably the
only reasons for the limited interest in ALC . compared to ALC.

In recent years, the development of very large ontologies and the use of ontologies to
access instance data has led to a revival of interest in tractable DLs. The main examples
are £L [5] and DL-Lite [9], the logical underpinnings of the OWL profiles OWL2
EL and OWL2 QL, respectively. In contrast to ALC, a satisfactory characterization
of the expressivity of such DLs is still missing, and a first aim of this paper is to fill
this gap for £L. To this end, we characterize ££ as a maximal fragment of FO that
is preserved under simulations and has finite minimal models. Note that preservation
under simulations alone would characterize £L£ with disjunctions, and the existence of
minimal models reflects the “Horn-aspect” of £L.

The second and main aim of this paper, however, is to introduce and investigate
two equi-expressive extensions of ££ with greatest fixpoints, ££” and £E£”7, and to
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prove that they stand in a similar relationship to ££ as ALCu to ALC. To this end,
we prove that ££" (and therefore also ££”*, which admits mutual fixpoints and is
exponentially more succinct than ££") can be characterized as a maximal fragment
of MSO that is preserved under simulations and has finite minimal models. Similar to
ALCu, ELY and ELY™T inherit many good properties of £L£, the most interesting being
that reasoning with general concept inclusions (GCls) is still tractable and that the same
type of algorithm can be used. Thus, in contrast to ALCu, the development of practical
decision procedures is no obstacle to using £EL£”.

Moreover, ££”1 has a number of very useful properties that ££ and most of its
extensions are lacking. To begin with, we show that in £ LYY least common subsumers
(LCS) w.r.t. general TBoxes always exist and can be computed in polynomial time (for
a bounded number of concepts). This result can be regarded as an extension of similar
results for least common subsumers w.r.t. classical TBoxes in £ L with greatest fixpoint
semantics in [1]. Similarly, in E£"" most specific concepts always exist and can be
computed in linear time; a result which also generalizes [1]. Secondly, we show that
ELYT has the Beth definability property with explicit definitions being computable in
polytime and of polynomial size. It has been convincingly argued in [21, 20] that this
property is of great interest for structuring TBoxes and for ontology based data access.
Another application of ££" is demonstrated in [15], where the succinct representa-
tions of definitions in ££" are used to develop polytime algorithms for decomposing
certain general £L-TBoxes.

To prove these result and provide a better understanding of the modeling capabil-
ities of ££"" we show that it has the same expressive power as extensions of ££ by
means of simulation quantifiers, a variant of second-order quantifiers that quantifies
”modulo a simulation of the model”; in fact, the relationship between simulation quan-
tifiers and ££”" is somewhat similar to the relationship between ALCy and bisim-
ulation quantifiers [11]. Proofs are omitted for brevity and the reader is referred to
www.csc.liv.ac.uk/~frank/publ/publ.html.

2 Preliminaries

Let N¢c and Nr be countably infinite and mutually disjoint sets of concept and role
names. £ L-concepts are built according to the rule

C= A | T | L | cnD | 3ro,

where A € N¢, 7 € Ng, and C, D range over €£-concepts3. An & L-concept inclusion
takes the form C' C D, where C, D are £L-concepts. A general EL-TBox 7T is a finite
set of £L-concept inclusions. An ABox assertion is an expression of the form A(a) or
r(a,b), where a, b are from a countably infinite set of individual names N;, A € Nc,
and 7 € Ng. An ABox is a finite set of ABox assertions. By Ind(.4) we denote the set
of individual names in A. An £ L-knowledge base (KB) is a pair (7, .A) that consists of
an £L£-TBox T and an ABox A.

3 In the literature, £L is typically defined without . The sole purpose of including L here is to
simplify the formulation of some results.
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The semantics of £L is based on interpretations Z = (AZ,-7), where the domain
A7 is a non-empty set, and -7 is a function mapping each concept name A to a subset
AZ of AZ, each role name r to a binary relation rT C AT x AZ, and each individual
name a to an element a” of AZ. The interpretation CZ C AT of £L-concepts C in an
interpretation Z is defined in the standard way [6]. We will often make use of the fact
that £ L-concepts can be regarded as formulas in FO (and, therefore, MSO) with unary
predicates from Nc, binary predicates from Ng, and exactly one free variable [6]. We
will often not distinguish between £ L-concepts and their translations into FO/MSO.

We now introduce £L”, the extension of ££ with greatest fixpoints and the main
language studied in this paper. £L"-concepts are defined like £ L-concepts, but addi-
tionally allow the greatest fixpoint constructor v.X.C, where X is from a countably
infinite set of (concept) variables Ny and C' an £L”-concept. A variable is free in a
concept C' if it occurs in C' at least once outside the scope of any v-constructor that
binds it. An £L£”-concept is closed if it does not contain any free variables. An £L£”-
concept inclusion takes the form C' = D, where C, D are are closed £L”-concepts. The
semantics of the greatest fixpoint constructor is as follows, where V is an assignment
that maps variables to subsets of AZ and V[X ~ W] denotes V modified by setting
V(X)=W:

wXx.CFY = {w c A% |w c chVIX=W

We will also consider an extended version of the v-constructor that allows to capture
mutual recursion. It has been considered e.g. in [10,23] and used in a DL context in
[19]; it can be seen as a variation of the fixpoint equations considered in [8]. The con-
structor has the form v; X7 --- X,,.C4,...,C, where 1 < ¢ < n. The semantics is
defined by setting (v; X1 - -+ X,,.C1,...,Cp)PY to

U{Wz | E|W1, e ,Wifl,Wi+1, ey Wn s.t. for 1 S j S n:
W, C G?,V[Xlel,...,an—) n]}
We use £L£"T to denote £L extended with this mutual greatest fixpoint constructor.
Clearly, vX.C' = 11 X.C, thus every £L"-concept is equivalent to an £L” " -concept.
Conversely, we have the following result, where the first part follows from [8]. The
length of a concept C' is defined as the number of occurrences of symbols in it.

Proposition 1. For every EL" " -concept, one can construct an equivalent EL” -concept
of at most exponential size. Moreover, there is a sequence of EL" " -concepts Cy, C1, . . .
such that C; is of length p(4), p a polynomial, whereas the shortest ELY -concept equiv-
alent to C; is of length at least 2°.

By extending the translation of ££-concepts into FO in the obvious way, one can trans-
late closed £L£” " -concepts into an MSO formula with one free first-order variable. We
will often not distinguish between £ L” " -concepts and their translation into MSO.

3 Characterizing £ £ using simulations

The purpose of this section is to provide a model-theoretic characterization of £L as
a fragment of FO that is similar in spirit to the well-known characterization of ALC



46 EL-Concepts go Second-Order

as the bisimulation-invariant fragment of FO. To this end, we first characterize gL,
the extension of ££ with the disjunction constructor LJ, as the fragment of FO that
is preserved under simulation. Then we characterize the fragment ££ of ££" using,
in addition, the existence of minimal models. A pointed interpretation is a pair (Z, d)
consisting of an interpretation Z and d € AZ. A signature X is a set of concept and role
names.

Definition 1 (Simulations). Let (71, d;) and (Z2, d2) be pointed interpretations and X
a signature. A relation S C ATt x A%2 is a X-simulation between (Z1,dy ) and (Z2, d2),
in symbols S : (Z1,d1) <x (Z2,d2), if (d1,ds) € S and the following conditions hold:

1. for all concept names A € X and all (e;,e5) € S, if e; € ATt then ey € A2
2. for all role names r € X, all (e1,e2) € S, and all €] € ATt with (eg,¢}) € 751,
there exists e, € AZ2 such that (ez, €}) € 772 and (e}, e}) € S.

If such an S exists, then we also say that (Zy,ds) X-simulates (Zy,d;) and write
(Z1,d1) <x (Z2,d3).

If X = Nc U Ng, then we omit X' and use the term simulation to denote X’-simulations
and (Z1,d1) < (Zo,ds) stands for (Z1,d1) <x (Zs,ds). It is well-known that the de-
scription logic ££ is intimately related to the notion of a simulation, see for example
[4,17]. In particular, £L-concepts are preserved under simulations in the sense that if
d € C? for an £L-concept C and (Zy,d1) <5 (Z,ds), then dy € C?*2. This obser-
vation, which clearly generalizes to ££", illustrates the (limitations of the) modeling
capabilities of ££/EL". We now strengthen it to an exact characterization of the ex-
pressive power of these logics relative to FO.

Let p(z) be an FO-formula (or, later, MSO-formula) with one free variable z. We
say that o(z) is preserved under simulations if, and only if, for all (Z, dy) and (Z, d2),
Il ': @[dﬂ and (Il,dl) < (Ig, d2) 1mphes Ig ': Lp[dg}.

Theorem 1. An FO-formula ¢(x) is preserved under simulations if, and only if, it is
equivalent to an £ L -concept.

To characterize £L, we add a central property of Horn-logics on top of preservation
under simulations. Let £ be a set of FO (or, later, MSO) formulas, each with one free
variable. We say that £ has (finite) minimal models if, and only if, for every p(z) € £
there exists a (finite) pointed interpretation (Z, d) such that for all ¢ (z) € L, we have
7 = 4[d] if, and only if, Vz.(p(z) — 9(x)) is a tautology.

Theorem 2. The set of £L-concepts is a maximal set of FO-formulas that is preserved
under simulations and has minimal models (equivalently: has finite minimal models): if
L is a set of FO-formulas that properly contains all £ L-concepts, then either it contains
a formula not preserved under simulations or it does not have (finite) minimal models.

We note that de Rijke and Kurtonina have given similar characterizations of various
non-Boolean fragments of ALC. In particular, Theorem 1 is rather closely related to
results proved in [16] and would certainly have been included in the extensive list of
characterizations given there had ££ already been as popular as it is today. In contrast,
the novelty of Theorem 2 is that it makes the Horn character of £L£ explicit through
minimal models while the characterizations of disjunction-free languages in [16] are
based on simulations that take sets (rather than domain-elements) as arguments.
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4 Simulation quantifiers and £L"

To understand and characterize the expressive power and modeling capabilities of ££",
we introduce three distinct types of simulation quantifiers and show that, in each case,
the resulting language has the same expressive power as EL£.

Simulating interpretations. The first language L% extends EL by the concept con-
structor 3™ (Z, d), where (Z,d) is a finite pointed interpretation in which only finitely
many o0 € Nc U Ng have a non-empty interpretation 02 C AZ. The semantics of
3%im(Z, d) is defined by setting for all interpretations 7 and e € A7,

e € (3™(Z,d))7 iff (T,d) < (T,e).

Example 1. Let T consist of one point d such that (d, d) € rZ. Then e € (35 (Z, d))7
iff there is an infinite r-chain starting at e in Z, i.e., there exist eg, e1, €2, . .. such that
e =egand (e;,e;+1) € r7 foralli > 0.

To attain a better understanding of the constructor 3%¥™ it is interesting to observe that
every EL% -concept is equivalent to a concept of the form 3% (Z, d).

Lemma 1. For every EL-concept C' one can construct, in linear time, an equivalent
concept of the form 3% (Z, d).

Proof. By induction on the construction of C. If C' = A for a concept name A, then let
T = ({d},-T), where AT = {d} and o = {) for all symbols distinct from A. Clearly, A
and 3% (Z, d) are equivalent. For C; = 3°"™(Z;,d;) and Cy = 3™ (Z,,ds) assume
that AZr N AZ2 = {d;} = {d2}. Then 3% (Z; UZ,, d,) is equivalent to C; M1 Cs. For
C = Ir.3%™(Z, d) construct a new interpretation Z’ by adding a new node e to A% and
setting (e, d) € rZ . Then 3%™(Z’, ¢) and C are equivalent. O

We will show that there are polynomial translations between £ £ and & L. When us-
ing £L" in applications and to provide a translation from ££"" to ££, it is convenient
to have available a “syntactic” simulation operator.

Simulating models of TBoxes. The second language ££°" extends £L by the concept
constructor 35 % (T,C), where X is a finite signature, 7 a general TBox, and C a
concept. To admit nestings of 3%, the concepts of £L£°" are defined by simultaneous
induction; namely, £ E“—concepts, concept inclusions, and general TBoxes are defined
as follows:

— every £L-concept, concept inclusion, and general TBox is an £L£*-concept, con-
cept inclusion, and general TBox, respectively;

— if 7 is a general ELT-TBox, C an SL',St-concept, and X a finite signature, then
I ¥ (T, C) is an £L -concept;

- if C, D are SESt—concepts, thenC C Disa SESt—concept inclusion;

- ageneral ££°'-TBox is a finite set of ££*-concept inclusions.

The semantics of 3™ X.(7, C) is as follows:

d € (3¥m X (T, C))? iff there exists (7, e) such that J is a model of 7, e € C7
and (J,e) <r (Z,d), where I = (Nc UNR) \ X.
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Example 2. LetT = {AC 3r.A} and X = {A}. Then 35 X (T, A) is equivalent to
the concept 3™ (Z, d) defined in Example 1.

We will later exploit the fact that 3™ X.(7, C) is equivalent to 3™ XU {A}.(77, A),
where A is a fresh concept name and 7/ = 7 U {A C C}. Another interesting (but
subsequently unexploited) observation is that we can w.l.0.g. restrict X to singleton sets
since ] ) )
Fm{otuX).(T,C) = 3F"{c}.(0,F3""X(T,C))
3simp (7,0) = 3%™{B}.(T,C)
where B is a concept name that does not occur in 7 and C'.

Simulating models of KBs. The third language £L£°® extends £L by the concept con-
structor 3% X .(T, A, a), where a is an individual name in the ABox A, 7 is a TBox,
and X a finite signature. More precisely, we define ££**-concepts, concept inclusions,
general TBoxes, and KBs, by simultaneous induction as follows:

— every £L-concept, concept inclusion, general TBox, and KB is an ££%?-concept,
concept inclusion, general TBox, and KB, respectively;

- if (7, .A) is a general ££°?-KB, a an individual name in .4, and X a finite signature,
then 3™ X (7, A, a) is an £L£°"-concept;

- if C, D are £L£°%-concepts, then C' C D is an £L°*-concept inclusion;

— a general £L£°%-TBox is a finite set of £L£°*-concept inclusions;

— an £L£°*-KB is a pair (7, .A) consisting of a general £L£°*-TBox and an ABox.

The semantics of 35 Y.(7T, A, a) is as follows:

d € (3m XY (T, A, a))? iff there exists amodel J of (T, A) such that (7,a”) <r
(Z,d), where I' = (Nc UNRg) \ X.

Example 3. Let T = (), A = {r(a,a)}, and X = (). Then 35" % (T, A, a) is equiva-
lent to the concept 357" (Z, d) defined in Example 1.

Let L4, L5 be sets of concepts. We say that Lo is polynomially at least as expressive as
Ly, in symbols £, <, Lo, if for every C; € £, one can construct in polynomial time
a Cy € Lo such that C; and Cy are equivalent. We say that L1, Lo are polynomially
equivalent, in symbols £ =, Lo, if £1 <, Lo and Lo <, L.

Theorem 3. The languages EL* T, EL, L5}, and EL5 are polynomially equivalent.

We provide sketches of proofs of eLs < ELcvt eyt <, gLt gLt <p EL*, and
EL <, EL.

ELS <, EL"T. By Lemma 1, considering £ £*'-concepts of the form 3*™(Z, d) is suf-
ficient. Each such concept is equivalent to the ££"1-concept vyd; - - - d,,.C1, ..., Ch,
where AT = {di,...,d,} is regarded as a set of concept variables, d = dy, and

C; = |_|{A | d; € AI} M |_|{E|’I"d] | (d“dj) S 7"1}.

ELYT <, EL. Let C be aclosed EL"1-concept. An equivalent €L -concept is con-
structed by replacing each subconcept of C' of the form v, X4, ..., X,,.C1, ..., C, with
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an £L°"-concept, proceeding from the inside out. We assume that for every variable X
that occurs in the original £L£”"-concept C, there is a concept name Ay that does not
occur in C. Now vy X1, ..., X,,.C1, ..., C,, (which potentially contains free variables)
is replaced with the ££*'-concept

PIAx, ., Ax, L ({Ax, ECH |1 <i<n},Ax,)

where C’il is obtained from C; by replacing every variable X with the concept name A x .

EL <, EL°. Let C be an EL"-concept. As already observed, we may assume
that D is a concept name in all subconcepts 3°™ X .(T, D) of C. Now replace each
3%im 37 (T, A) in C, proceeding from the inside out, by 3™ X (T, A, a), where A =
{A(a)}. The resulting concept is equivalent to C'.

ELY <, EL. To prove this inclusion, we make use of canonical models for £L£°°-
KBs, similar to those used for ££ in [5]. In particular, canonical models for ££° can
be constructed by an extension of the algorithm given in [5], see the full version for
details.

Theorem 4 (Canonical model). For every satisfiable EL°“-KB (T, A), one can con-
struct in polynomial time a model It 4 of (T, A) with | ATT-A| bounded by twice the
size of (T, A) and such that for every model J of (T, A), we have (I 4,a*74) <
(J,a7) forall a € Ind(A).

To prove EL5 <), € L%, it suffices to show that any outermost occurrence of a concept
of the form 3% 3 (T, A, a) in an £L>*-concept C can be replaced with the equivalent
EL-concept 3™ (IF 4, a), where IF , denotes Zr, 4 except that all o € X are
interpreted as empty sets. First let d € (3*™X.(7, A, a))7. Then there is a model Z’
of (T, A) such that (Z’,a”) <5 (J,d). By Theorem 4, (Z7 4,a*™4) < (I',a*").
Thus, by closure of simulations under composition, (I% a4:a) <x (J,d) as required.
The converse direction follows from the condition that Z7 4 is a model of (7', .A). This
finishes our proof sketch for Theorem 3.

It is interesting to note that, as a consequence of the proofs of Theorem 3, for every
ELYT-concept there is an equivalent ££""-concept of polynomial size in which the
greatest fixpoint constructor is not nested, and similarly for ££5, ££5%. An important
consequence of the existence of canonical models, as granted by Theorem 4, is that
reasoning in our family of extensions of £L is tractable.

Theorem 5 (Tractable reasoning). Let £ be any of the languages ELY, ELT, L5,
EL, or EL3%. Then KB consistency, subsumption w.r.t. TBoxes, and the instance prob-
lem can be decided in PTIME.

Proof. By Theorem 3, it suffices to concentrate on £ = E£L°%. Consistency can be
decided in PTIME by the algorithm that constructs the canonical model. Subsumption
can be polynomially reduced in the standard way to the instance problem. Finally, by
Theorem 4, we can decide the instance problem as follows: to decide whether (7, A) =
C(a), where we can w.l.o.g. assume that C' = A for a concept name A, we check
whether (7, A) is inconsistent or a?7-4 € AZ7.4, Both can be done in PTIME. O
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5 Characterizing £L" using simulations

When characterizing ££ as a fragment of first-order logic in Theorem 2, our starting
point was the observation that £ £-concepts are preserved under simulations and that ££
is a Horn logic, thus having finite minimal models. The same is true for £L£": first,
EL"-concepts are preserved under simulations, as ££°* is obviously preserved under
simulations and, by Theorem 3, every £L£”-concept is equivalent to an ££'-concept.
And second, a finite minimal model of an £L"-concept C' can be constructed by taking
the canonical model Z7 4 from Theorem 4 for 7 = {A C C'} and A = {A(a)}. As
required, we then have = C' C D iff (T, A) | D(a) iff a € DI74, for all EL£-
concepts D. However, EL" is clearly not a fragment of FO. Instead, it relates to MSO
in exactly the way that ££ related to FO.

Theorem 6. The set of ELY -concepts is a maximal set of MSO-formulas that is pre-
served under simulations and has finite minimal models: if L is a set of MSO-formulas
that properly contains all £L -concepts, then either it contains a formula not preserved
under simulations or it does not have finite minimal models.

Proof. Assume that £ D EL" is preserved under simulations and has finite mini-
mal models. Let ¢o(x) € L. We have to show that ¢(x) is equivalent to an EL£"-
concept. To this end, take a finite minimal model of ¢, i.e., an interpretation Z and
ad € AT such that for all ¢)(x) € L we have that Va.(p(x) — t(z)) is valid iff
T |= 9[d]. We will show that ¢ is equivalent to (the MSO translation of) 3%7"(Z, d).
We may assume that 3™(Z,d) € L. Since d € (3°™(Z,d))%, we thus have that
Vr.(¢(x) — 3% (T, d)(x)) is valid. Conversely, assume that d’ € (35 (Z,d))7 for
some interpretation J. Then (Z, d) < (J,d’). We have (Z, d) = ¢[d]. Thus, by preser-
vation of () under simulations, J = ¢[d’]. Thus Vz.(3%™(Z, d)(z) — ¢(z)) is also
valid. O

A number of closely related characterizations remain open. For example, we conjecture
that an extension of Theorem 1 holds for ££”" and MSO (instead of ££ and FO).
Also, it is open whether Theorem 6 still holds if finite minimal models are replaced by
arbitrary minimal models.

6 Applications and Logical Properties

The p-calculus is considered to be extremely well-behaved regarding its expressive
power and logical properties. The aim of this section is to take a brief look at the ex-
pressive power of its ££-analogues ££” and ££” . In particular, we show that ££""
is more well-behaved than ££ in a number of respects. Throughout this section, we will
not distinguish between the languages previously proved polynomially equivalent.

To begin with, we construct the least common subsumer (LCS) of two concepts
w.rt. a general ££"1-TBox (the generalization to more than two concepts is straight-
forward). Given a general ££”T-TBox 7 and concepts Cy, Cs, a concept C' is called
the LCS of C1, Cy warit. T in ELV T if

-TEC,CCfori=1,2
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- if 7 =C;C Dfori=1,2and D a&L""-concept, then T = C C D.
It is known that, in ££, the LCS does not always exist [1].
Example 4. In £L, the LCS of A, B w.r.t.

7 = {A C 3has_parent. A, B C Jhas_parent.B}

does not exist. In £L£Y, however, the LCS of A,B w.r.t. 7 is given by v X.3has_parent. X

To construct the LCS in ££”, we adopt the product construction used in [1] for the
case of classical TBoxes with a fixpoint semantics. For interpretations Z; and 7, the
product I, x T, is defined by setting AT1*72 = ATv x ATz (dy,dy) € AT *22 iff
d; € Ai fori = 1,2, and ((dy,dz), (d},dy)) € rT1>%2 iff (d;, d}) € r¥i fori = 1,2.

K2

Theorem 7. Let T be a general EL""-TBox and Cy and Cy be L' -concepts. Then
I Zr.0, X I1.00y (dey,dey)) is the LCS of C1, Co warit. T in ELY.

The same product construction has been used in [1] for the case of classical TBoxes
with a fixpoint semantics, which, however, additionally require a notion of conservative
extension (see Section 7).

Our second result concerns the most specific concept, which plays an important
role in the bottom-up construction of knowledge bases and has received quite a bit of
attention in the context of ££ [1,7]. Formally, a concept C' is the most specific concept
(MSC) for an individual a in a knowledge base (7, A) in ££"T if

- (7T,A) EC(a) and
— for every EL" " -concept D with (7, A) = D(a), we have 7 |= C C D.

In £L, the MSC need not exist, as is witnessed by the KB (0}, {has_parent(a, a)}),
where the MSC for a is non-existent.

Theorem 8. In EL"Y, the MSC always exists for any a in any KB (T, A) and is given
as 3¥m0.(T, A, a).

In [1], the MSC in £L£-KBs based on classical TBoxes with a fixpoint semantics is
defined. The relationship between ££”™ and fixpoint TBoxes is discussed in more detail
in Section 7.

We now turn our attention to issues of definability and interpolation. From now
on, we use sig(C') to denote the set of concept and role names used in the concept C.
A concept C is a Y-concept if sig(C) C X. Let T be a general EL"T-TBox, C an
ELYT-concept and I” a finite signature.

We start with considering the fundamental notion of a I'-definition. The question
addressed here is whether a given concept can be expressed in an equivalent way by
referring only to the symbols in a given signature " [21, 20]. Formally, a I'-concept D
is an explicit I'-definition of a concept C' w.r.t. a TBox 7 if, and only if, T = C = D
(i.e., C and D are equivalent w.r.t. 7). Clearly, explicit /'-definitions do not always exist
in any of the logics studied in this paper: for example, there is no explicit { A }-definition
of B w.r.t. the TBox {A C B}. However, it is not hard to show the following using the
fact that 35 XJ.(T, C) is the most specific I'-concept that subsumes C' w.r.t. 7.
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Proposition 2. Let C' be an EL" " -concept, T a general EL'T-TBox and I a sig-
nature. There exists an explicit I'-definition of C w.r.t. T iff 3™ X (T, C) is such a
definition (for X = sig(T,C) \ I').

It is interesting to note that if 7 happens to be a general ££-TBox and C an £ L-concept
and there exists an explicit I'-definition of C' w.r.t. 7, then the concept 35" X.(T, O)
from Proposition 2 is equivalent w.r.t. 7 to an £L-concept over I'. This follows from
the fact that £L has the Beth definability property (see below for a definition) which
follows immediately from interpolation results proved for ££ in [15].

The advantage of giving explicit I’-definitions in ££”" even when 7 and C are for-
mulated in €L is that I"-definitions in ££" are of polynomial size while the following
example shows that they may be exponentially large in £L.

Example 5. Let T consist of A; = Ir;. A;1 1 M3s;Ajpq for0 <i < n,and A, = T.
Let ' ={ro,...,"n-1,80,--,5n—1}. Then Ag has an explicit I'-definition w.r.t. 7 in
EL, namely Cy, where C; = 3r;.C;11 M 3s;.C; 1 and C,, = T. This definition is of
exponential size and it is easy to see that there is no shorter I'-definition of Ay w.r.t. 7
inEL.

Say that a concept C' is implicitly I'-defined w.r.t. T ifft T U Tp = C = Cr, where T
and Cr are obtained from 7 and C, respectively, by replacing each o ¢ I" by a fresh
symbol ¢’. The Beth definability property, which was studied in a DL context in [21,
20], ensures that explicit I'-definitions always exist when they possibly can.

Theorem 9. ££°" has the polynomial Beth definability property: for every general
ELYT-TBox T, concept C, and signature I such that C' is implicitly I'-defined w.r.t. T,
there is an explicit I'-definition w.r.t. T, namely 35 (sig(T,C)\ I').(T, C).

The proof of Theorem 9 relies on £L£" having a certain interpolation property. Say
that two general TBoxes 77 and 73 are A-inseparable w.rt. EL” if T; = C C D iff
7> | C C D for all £EL£"-inclusions C' C D.

Theorem 10. Ler 71 U T3 = C T D and assume that Ty and T3 are A-inseparable
w.rt. ELY for A = sig(T1,C) Nsig(7a, D). Then the A-concept F = 35X (T, C),
Y = sig(71,C) \ 4, is an interpolant of C, D w.rt. Ty, Ty; i.e. Ty = C C F and
T = FLCD.

We show how Theorem 9 follows from Theorem 10. Assume that 7 U7y = C = Cp,
where 7, 7, C, C'r satisfy the conditions of Theorem 9. Then 7 and 7 are I -insepa-
rable and I" 2 sig(7, C)Nsig(7r, Cr). Thus, by Theorem 10, 7 = 35 ¥ (7, Cr) C
C for X = sig(7r, Cr)\I". Now Theorem 9 follows from the fact that 35" X.(71, Cr)
is equivalent to 35 X" .(T, C) for X" = sig(T,C) \ I

In [15], it is shown that £L also has this interpolation property. However, the ad-
vantage of using L7 is that interpolants are of polynomial size. The decomposition
algorithm for £ given in [15] crucially depends on this property of E£"7.
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7 Relation to TBoxes with Fixpoint Semantics

There is a tradition of considering DLs that introduce fixpoints at the TBox level instead
of at the concept level [18, 19, 2]. In [4], Baader proposes and analyzes such a DL based
on £L and greatest fixpoints. This DL, which we call ££8® from now on, differs from
our £L£" in that (i) TBoxes are classical TBoxes rather than sets of GCIs (but cycles are
allowed) and (ii) the v-concept constructor is not present; instead, a greatest fixpoint
semantics is adopted for the defined concept names.

On the concept level, £ is clearly strictly more expressive than £L&: since fix-
points are introduced at the TBox level, concepts of £L8P coincide with £ L-concepts,
and thus there is no £L£8™-concept equivalent to the ££"-concept vX.3r.X. In the
following, we show that EL£” is also more expressive than £L&P also on the TBox
level, even if we restrict ££”-TBoxes as in £L£&P. We use the standard notion of logi-
cal equivalence, i.e., two TBoxes 7 and 7" are equivalent iff 7 and 7" have precisely
the same models. As observed by Schild in the context of ALC [19], every £L8™-
TBox 7 = {A; = C4,..., A, = C,} is equivalent in this sense to the ££"*-TBox
{4; = vX1,...,X,.C{,....C} | 1 < i < n}, where each C/ is obtained from C;
by replacing each A; with X;, 1 < j < n. Note that since we are using mutual fix-
points the size of the resulting TBox is polynomial in the size of the original one. In the
converse direction, there is no equivalence-preserving translation.

Lemma 2. For each £L8P-TBox, there is an equivalent EL" " -TBox of polynomial size,
but no ELEP-TBox is equivalent to the EL”-TBox {A = PMvX.3r.X}.

Proof. (sketch) It is not hard to prove that for every £L£&P-TBox 7, defined concept
name A in 7, and role name 7, one of the following holds:

— there is an m > 0 such that A C 3r™. T implies n < m or
— A C 3r™.B for some n > 0 and defined concept name B.

However, no such TBox can be equivalent to A C 3r™.B since 7 = Ir™.T for all
n > 0, but there is no n > 0 and defined concept name B with A C 3r".B. O

ELEP and £LY become equi-expressive if the strict notion of equivalence used above is
replaced with one based on conservative extensions, thus allowing the introduction of
new concept names that are suppressed from logical equivalence. However, we believe
that not having to deal with conservative extensions is an advantage of EL£” over £ L8P,
as conservative extensions tend to make simple definitions somewhat awkward, c.f. the
least common subsumers and most specific concepts for ELE™ in [3,4].
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Abstract. UML class diagrams (UCDs) are the de-facto standard for-
malism for the analysis and design of information systems. By adopting
formal language techniques to capture constraints expressed by UCDs
one can exploit automated reasoning tools to detect relevant properties,
such as schema and class satisfiability and subsumption between classes.
Among the reasoning tasks of interest, the basic one is detecting full sat-
isfiability of a diagram, i.e., whether there exists an instantiation of the
diagram where all classes and associations of the diagram are non-empty
and all the constraints of the diagram are respected. In this paper we es-
tablish tight complexity results for full satisfiability for various fragments
of UML class diagrams. This investigation shows that the full satisfiabil-
ity problem is EXPTIME-complete in the full scenario, NP-complete if we
drop ISA between relationships, and NLOGSPACE-complete if we further
drop covering over classes.

1 Introduction

UML (Unified Modeling Language)® is the de-facto standard formalism for the
analysis and design of information systems. One of the most important compo-
nents of UML are class diagrams (UCDs), which model the domain of interest in
terms of objects organized in classes and associations between them (represent-
ing relations between class instances). The semantics of UCDs is by now well
established, and several works propose to represent it using various kinds of for-
mal languages, e.g., [5,8,7,9,10,4,1,2]. Thus, one can in principle reason on UCDs.
The reasoning tasks that one is interested in are, e.g., subsumption between two
classes, and satisfiability of a specific class or association in the diagram. Here,
we consider full satisfiability of a diagram [12], i.e., the fact that there is at
least one model of the diagram where each class and association is non-empty.
This property is of importance since the presence of some unsatisfiable class or
association actually means either that the diagram contains unnecessary infor-
mation that should be removed, or that there is some modelling error that lead
to the loss of satisfiability. In fact, it can be considered as the most fundamental
property that should be satisfied by UCDs.

* This work has been partially supported by the EU project Ontorule (ICT-231875).
! nttp://www.omg.org/spec/UML/
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The only work that addressed explicitly the complexity of full satisfiability
of UCDs is [12], which includes a classification of UCDs based on inconsistency
triggers. Each inconsistency trigger is a pattern for recognizing possible incon-
sistencies of the diagram, based on the interaction between different modelling
constraints. [12] introduces various algorithms for checking full satisfiability of
UCDs with diverse expressive power, together with an analysis of their compu-
tational complexity. Full satisfiability of UCDs is computed in EXPTIME in the
most general case; in NP if association generalization and multiple and over-
writing inheritance of attributes is dropped; and in P if the diagrams are further
restricted by forbidding covering constraints. According to the results reported
n [12], the complexity of checking full satisfiability of UCDs can be reduced if
the value types of the attributes associated to sub-classes are sub-types of the
value types for the respective attributes associated to the super-classes. The algo-
rithms handling these restricted UCDs are claimed to compute full satisfiability
respectively in PSPACE (instead of EXPTIME) and P (instead of NP).

However, our results show that even when attributes are not considered at
all in the UCDs, the complexity of the problem does not change. Indeed this
paper shows that the full satisfiability problem is EXPTIME-complete in the full
scenario, NP-complete if we drop 1SA between relationships, and NLOGSPACE-
complete if we further drop covering over classes. Thus, the complexity of full
satisfiability coincides in all cases with that of class satisfiability [1]. Our results
build on the formalization of UCDs in terms of DLs given in [4,1]. In fact,
our upper bounds are an almost direct consequence of the corresponding upper
bounds of the corresponding DL formalization. On the other hand, the obtained
lower bounds are more involved, and in some cases require a careful analysis of
the corresponding proof for class satisfiability. The results presented here hold
also for the Entity-Relationship model and other conceptual models.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the DL ALC, on which we base our results, and show that full satisfiability in
ALC is ExpTIME-complete. In Sections 3 and 4, we provide our results on full
satisfiability of various variants of UCDs.

2 Full Satisfiability in the Description Logic ALC

We start by studying full satisfiability for the DL ALC, one of the basic variants
of DLs [3]. We first define the notion of full satisfiability of a TBox and then we
show that it has the same complexity as classical satisfiability for ALC.

Definition 1 (TBox Full Satisfiability). An ALC TBox 7 is said to be fully
satisfiable if there exists a model Z of 7 such that AT # (), for every atomic
concept A in 7. We say that 7 is a full model of T.

Lemma 2. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to
full satisfiability of ALC TBozxes.

Proof. Let T be an ALC TBox and C an ALC concept. As pointed out in [6],
C is satisfiable w.r.t. 7 if and only if C'M A7 is satisfiable w.r.t. the TBox 7y
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consisting of the single assertion Ay C HclECgeT(_'Cl UC) M |i<icn VPi. AT,
where A7 is a fresh atomic concept and Py, ..., P, are all the atomic roles in
7T and C. In order to reduce the problem to full satisfiability, we extend 77 to
To=T1 U{Ac C CN A7}, with A¢ a fresh atomic concept, and prove that

C M A7 is satisfiable w.r.t. 77 iff 75 is fully satisfiable.

(=) Let Z be a model of 77 such that (C' 11 A7)% # (). We construct an interpre-
tation of To, J = (AT U {d*°P},-7), with d'°P ¢ AT, such that:

A = AL AL =(CnAr)E,
AT = AT U {d'P} for each atomic concept A in 7 and C,
P7 = PT  for each atomic role P in 7 and C.

Obviously, the extension of every atomic concept is non-empty in J. Next,
we show that J is a model of 73, by relying on the fact (easily proved by
structural induction) that DZ C D7 | for each subconcept D of concepts in
7;. Then, it is easy to show that J satisfies the two assertion in 75:

Af=A7C( [] (=Ciuc)n [ vP.Ar)*

CLCCoeT 1<i<n
- ( |_| (—\01 L Cg) M |_| VP;. A']')J
C1CCoeT 1<i<n

Ag =(Cn AT>I c((n AT)J

(«=) Conversely, every full model J of Ty is also a model of 7; with (CT1 A7) # 0,
as AZ C (CnAr)7. O

Theorem 3. Full satisfiability of ALC TBozes is EXPTIME-complete.

Proof. The EXPTIME membership is straightforward, as deciding full satisfia-
bility of an ALC TBox 7 can be reduced to deciding satisfiability of the TBox
T UU <ic,{T 3P A}, where Ay, ..., A, are all the atomic concepts in 7,
and P’ is a fresh atomic role. The EXpPTIME-hardness follows from Lemma 2. O

We now modify the reduction of Lemma 2 so that it applies also to prim-
itive ALC™ TBoxes, i.e., TBoxes that contain only assertions of the form:
AC B, AC -B, AC BUB, ALCVP.B, AC 3P B, where A, B,
B’ are atomic concepts, and P is an atomic role.

Theorem 4. Full satisfiability of primitive ALC™ TBoxes is EXPTIME-
complete.

Proof. The EXPTIME membership follows from Theorem 3. For proving the
ExPTIME-hardness, we use a result in [4] showing that concept satisfiability
in ALC can be reduced to atomic concept satisfiability w.r.t. primitive ALC™
TBoxes. Let 7- = {4, C D; | 1 < j < m} be a primitive ALC™ TBox, and Ay
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an atomic concept. By Lemma 2, we have that Ag is satisfiable w.r.t. 7 if and
only if the TBox 74 containing the assertions

Ar-C [ (4;uDy)n [ VP.Ar-, AL C Ao Ar-,

A;CD;eT- 1<i<n

is fully satisfiable, with Azr-, A} fresh atomic concepts. 75 is not a primitive
ALC™ TBox, but it is equivalent to the TBox containing the assertions:

Ay C Ao Ar- C-A U D, Ar- VP Ar-

A6 E AO AT— E _‘Am U Dm AT* E VPn AT—,

Finally, to get a primitive ALC™ TBox, 7, , we replace each assertion of the
form AT* E _‘Aj ] Dj by A’T* E le L BJQ, le E _\Aj, and B]2 E Dj, with le
and B? fresh atomic concepts, for j € {1,...,m}.

We show now that 73 is fully satisfiable iff 7, is fully satisfiable:

(=) Let T = (A%, ) be a full model of 7] . We extend Z to an interpretation J
of 7,7 Let A7 = AT U {d*,d"}, with {d*,d~} N AT = (), and define -7 as
follows:

AL =ap . a7 = a7
AT = AT U{d"}, for every other atomic concept A in 7,

le.‘j = (ﬁAj)j and BJQ»J = D3-7, for each Ay- C le» U BJZ €T, ,
PJ = PTu{(dT,d")}, for each atomic role P in 7, .

It is easy to see that J is a full model of 7.
(<) Trivial, since every model of 7, is a model of 73. O

3 Full Satisfiability of UML Class Diagrams

Three notions of UCD satisfiability have been proposed in the litera-
ture [13,4,12,11]. First, diagram satisfiability refers to the existence of a model,
i.e., an interpretation that satisfies all constraints expressed by the diagram and
where at least one class has a nonempty extension. Second, class satisfiability
refers to the existence of a model of the diagram where the given class has a
nonempty extension. Third, we can check whether there is a model of an UML
diagram that satisfies all classes and all relationships in a diagram. This last
notion of satisfiability, referred here as full satisfiability and introduced in [12] is
thus stronger than diagram satisfiability, since a model of a diagram that satisfies
all classes is, by definition, also a model of that diagram.

We adopt the formalization of UCDs in terms of DLs as given in [4,1]. For
lack of space we give here only a brief overview of such formalization. Classes are
formalized by atomic concepts; and relations by roles. Generalization between
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Fig. 3. Encoding of AC VP.B Fig. 4. Encoding of A C 3P.B

classes (e.g., C1ISACy) are formalized by concept inclusions (C7 T Cy); disjoint-
ness constrains between two classes C7 and Cy by means of axioms of the form
C1 € —(Cjy; and covering constraints by axioms of the form C C C7 UCs. Finally,
multiplicity constraints are formalized using qualified number restrictions.

Definition 5 (UML Full Satisfiability). A UCD, D, is fully satisfiable if
there is an interpretation, Z, that satisfies all the constraints expressed in D and
such that CT # ) for every class C in D, and R? # () for every association R in
D. We say that Z is a full model of D.

We now address the complexity of full satisfiability for UCDs. For the lower
bounds, we use the results presented in Section 2 and reduce full satisfiability of
primitive ALC™ TBoxes to full satisfiability of UCDs. This reduction is based
on the ones used in [4,1] for determining the lower complexity bound of schema
satisfiability in the extended Entity-Relationship model.

Given a primitive ALC™ TBox 7, construct an UCD X(7) as follows: for
each atomic concept A in 7, introduce a class A in X(7"). Additionally, introduce
a class O that generalizes (possibly indirectly) all the classes in X'(7") that encode
an atomic concept in 7. For each atomic role P, introduce a class Cp, which
reifies the binary relation P. Further, introduce two functional associations P,
and P, that represent, respectively, the first and second component of P. The
assertions in 7 are encoded as follows:

— The correspondence of UCDs and DLs gives a straightforward encoding for
assertions of the foom A C B, AC =B, and A C By U By (see Fig. 1 and
Fig. 2).
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— For each assertion of the form A C VP. B, add the auxiliary classes Cp,
and UPAB, and the associations P4pi1, Pipy, and P4pe, and construct the
diagram shown in Fig. 3.

— For each assertion of the form A C 3P. B, add the auxiliary class Cp,, and
the associations P4p1 and Papo, and construct the diagram shown in Fig. 4.

Lemma 6. A primitive ALC™ TBox T is fully satisfiable iff the UCD X(T),
constructed as above, is fully satisfiable.

Proof. (<) Let J = (A7,-7) be a full model of ¥(7). We construct a full
model Z = (AZ,.T) of T by taking AT = A7 . Further, for every concept name
A and for every atomic role P in 7, we define respectively A7 = A and?
PT = (P;)Y o Py . Let us show that 7 satisfies every assertion in 7.

(AC B, AC -B, and A C By UBs): The statement easily follows from the
construction of 7.

(ACVP.B): Let 0 € AT = A7 and o’ € AT = A7 such that (0,0') € PZ.
Since P = (P )7 o Py, there is o’ € A7 such that (o0,0") € (P;)Y, and
(0",0') € Py. Then, o’ € CY = CPAB U@ZAB We claim that o’ € C’JB
Suppose othervvlse then there is a unique 01 € A7, such that (0",01) € PY

J 7 7 AB1
and o1 € Ap_. It follows from Py, C P}’ and by the multiplicity constraint
over Cp, that 01 = o. This rises a contradlctlon because o € A7 C AJ
and, A}Z and A‘IZ are dlSJOlnt Then 0" € C‘7A ,- Further, there is a umque

09 € AJmeh (0", 02) S PAB2 and oy € BY. From PAB2 - P and the mul-

tiplicity constraint on Cp, it follows that oo = o'. Thus, we have that
o' € BY = B%, and therefore, o € (VP.B)~.
(AC3PB): Let o € AT = A7, Then, there is o € A7 such

that (o',0) € P{,, and o € C;ZAB. Then, there is o’ € AY with
(o/,0") € PXBQ and o € BY = B%. Then, since P;ZB2 - P2‘77 PXBI - P1‘7
and PT = (P, )7 o Py, we can conclude that (o,0") € PZ.
(=) Let T = (AZ,T) be a full model of 7', and let role(T) be the set of role names
in 7. Extend Z to a legal instantiation J = (AY,-7) of X(T), by assigning
suitable extensions to the auxiliary classes and associations in X(7). Let AY =
AT UT U A, where: A = Wacvp seriaars,aap,}, such that AT N A =0, and
= HJPETOZ&(T) AP? with:

APZPIU U {(aAPBab)v(aAPBaa)}
ACVP.BeT

with b an arbitrary instance of B, and 6 an arbitrary element of AZ. We set
09 = AT U A, AT = AT for each class A corresponding to an atomic concept
in 7, and CY = Ap for each P € role(7T). Additionally, the extensions of the
associations P; and P are defined as follows:

P = {((0,0),0) | (0,0') € CF}, Py ={((0,0"),0') | (0,0") € CF}.
We now show that J is a full model of X(7).

2 We use r1 o ro to denote the composition of two binary relations r, and 7.
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1. For the portions of X(7") due to TBox assertions of the form A C B, A C —B,
and A C By U Bsy, the statement follows from the construction of 7.
2. For each TBox assertion in 7 of the form A C VP. B, let us define

AL = ATU{aa,, ), Af =07\ A]
cf. ={(0,0)eCfoc AL},  CTp,, ={(0,0)eCl|oc AT},

PI{Bl :{((070/)70) GPf] | OGAgB}a PA’Y

BlL {((Oa 0/)50) S Plj | o€ A‘IZB},
PA,]BZ = {((070/)a0/) S P2‘7 ‘ o c A‘IZB} .

It is not difficult to see that J satisfies the fragment of X(7) as shown in
Fig. 3. Further, it is clear that the extension of the classes that encode atomic
concepts in Tare non-empty. For the classes Ap,, Ap,, Cp,,, and Cp,, we
have that

J B 1T T o N
anp, € Ap,, az, €Ap,, (aap,.b) € Cp, ., (aAPB,o)EC'pAB.
For the associations Py, P», Pap1, Pap2 and Pjp; we have that

((aAPB’b>7aAPB) € PAJBl - P1‘77 ((aAPBaa)vaApB) € Png
((a’APB’b)vb) € PAJBQ - PQJ

3. For each TBox assertion in 7 of the form A C JP.B, let us define the
extensions for the auziliary classes and associations as follows:
CI‘ZAB ={(0,0') € Cf | 0 € AT and o' € BT},
P;ZBI = {((07 0/)70) € Pf7 | (o, 0/) € CgAB )
Pips ={((0,0'),0") € P | (0,0') € CF,, }.

We have that CgAB # ) as there exists a pair (a,b) € Ap with a € A%, and
b€ BL. Since CF,  # 0, we have that Py, # 0 and Py, # 0. 0

Theorem 7. Full satisfiability of UCDs is EXPTIME-complete.

Proof. We establish the upper bound by a reduction to class satisfiability in
UCDs, which is known to be ExPTIME-complete [4]. Given a UCD D, with
classes C1,...,C,, we construct the UCD D’ by adding to D a new class C
and new associations R;, for ¢ € {1,...,n}. Furthermore, to check that every
association is populated we use reification, i.e., we replace each association P in
the diagram D between the classes C; and C; (such that neither C; nor Cj is
constrained to participate at least once to P) with a class C'p and two functional
associations P; and P, to represent each component of P. Finally, we add the
constraints shown in Fig. 5. Intuitively, we have that if there is a model Z of the
extended diagram D’ in which CZ # (), then the multiplicity constraint 1..x on
the association Rp forces the existence of at least one instance o of Cp. By the
functionality of P, and P, there are at least to elements o; and o;, such that
0; € Cf, 05 € C}, (0,0;) € P{ and (0,0;) € Py. Then, one instance of P can be
the pair (0;,0;). Conversely, if there is a full model J of D, it is easy to extend
it to a model 7 of D’ that satisfies C.

The ExpTIME-hardness follows from Lemma 6 and Theorem 4. a
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Fig. 5. Reducing UML full satisfiability to class satisfiability

4 Full Satisfiability of Restricted UML Class Diagrams

In this section, we investigate the complexity of the full satisfiability problem
for two sub-languages: UMLy,,;, which disallows ISA between associations and
UML,.s, where also completeness between classes is forbidden. By building on
the techniques used for the satisfiability proofs in [1], we show that also in this
case checking for full satisfiability does not change the complexity of the problem.

We first show that deciding full satisfiability for UMLy,,; diagrams is NP-
complete. For the lower bound, we provide a polynomial reduction of the 3SAT
problem (which is known to be NP-complete) to full satisfiability of UML e
CDs.

Let an instance of 3SAT be given by a set ¢ = {c1,...,cm} of 3-clauses over
a finite set II of propositional variables. Each clause is such that ¢; = £} V€2V (3,
for i € {1,...,m}, where each E? is a literal, i.e., a variable or its negation. We
construct an UMLy,,; diagram Dy as follows: Dy contains the classes Cy, C,
one class C; for each clause ¢; € ¢, and two classes C}, and C-,, for each variable
p € II. To describe the constraints imposed by Dy, we provide the corresponding
DL inclusion assertions, since they are more compact to write than an UCD. For
every i € {1,...,m}, j € {1,2,3}, and p € II, we have the assertions

Cy C C, C; CCr, Clz C G,
Cp C C, Cy C G, Ci ECp UCp U s,
C_\p C C, Cr C Cp (] Cﬁp, C_|p C ﬁcp.

Clearly, the size of Dy is polynomial in the size of ¢.

Lemma 8. A set ¢ of 3-clauses is satisfiable if and only if the UMLy,o; class
diagram Dy, constructed as above, is fully satisfiable.

Proof. (=) Let J |= ¢. Define an interpretation Z = ({0, 1}, ), with
C"IF ={0,1}
CI=ChLUCLUCE, forc;=10;VEVE
{1}, f T E¢ ; g :

ct = C;=Cfn---nCE.
{0}, otherwise

Clearly, CT # ) for every class C representing a clause or a literal, and for
C = Ct. Moreover, as at least one literal ¢ in each clause is such that J = ¢/,
then 1 € C7 for every i € {1,...,m}, and therefore 1 € C’(f. It is straightforward
to check that 7 satisfies 7.
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(<) Let T = (AZ,-T) be a full model of Dg. We construct a model J of ¢ by
taking an element o € C’g , and setting, for every variable p € IT, J | p if and
only if 0 € Cg. Let us show that J = ¢. Indeed, for each i € {1,...,m}, since
o€ C’dz, and by the generalization Cy, C C;, we have that o € CZ, and by the
completeness constraint C; & Cp U Cpz L Cys, there is some j; € {1,2,3} such
that o € Cffi" If Kfl is a variable, then J |= le by construction, and thus J [ ¢;.

Otherwise, if EfT = —p for some variable p, then, by the disjointness constraint
C-p E =Cy, we have that o ¢ CF. Thus, J |= —p, and therefore, J |= ¢;. O

Theorem 9. Full satisfiability of UMLyee; is NP-complete

Proof. The NP-hardness follows from Lemma 8. To prove the NP upper bound,
we reduce full satisfiability to class satisfiability, which, for the case of UMLjyo;,
is known to be in NP [1]. We use a similar encoding as the one used in the proof
of Theorem 7 (see Fig. 5). O

We turn now to UML,; class diagrams and show that full satisfiability in
this case is NLOGSPACE-complete. We provide a reduction of the REACHABIL-
ITY problem on (acyclic) directed graphs, which is known to be NLOGSPACE-
complete (see e.g., [14]) to the complement of full satisfiability of UML,.; CDs.
Let G = (V,E,s,t) be an instance of REACHABILITY, where V is a set of
vertices, E C V x V is a set of directed edges, s is the start vertex, and ¢ the
terminal vertex. We construct an UML,.; diagram D¢g from G as follows:

— D¢ has two classes C} and C2, for each vertex v € V' \ {s}, and one class
C, corresponding to the start vertex s.

— For each edge (u,v) € E with u # s and v # s, D¢ contains the following
constraints (again expressed as DL inclusion assertions):

clcaol, c?cc2
— For each edge (s,v) € F, Dg contains the following constraints:

C,CC}l, C, C C2

For each edge (u,s) € E, D¢ contains the following constraints:
Cy EC, CiECs.
— The classes C} and C? are constrained to be disjoint in D, expressed by:
C} C-C:
The following lemma establishes the correctness of the reduction.

Lemma 10. ¢ is reachable from s in G iff Dg is not fully satisfiable.
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Proof. (=) Let m = vy,...,v, be a path in G with vy = s and v, = t. We
claim that the class C; in the constructed diagram D¢ is unsatisfiable. Suppose
otherwise, that there is a model Z of Dg with o € CZ, for some o € AZ. From T,
the construction yields a number of generalization constraints in D¢ such that

the following holds:
C’fg...gctlz CSIQ---QCEI

From this we obtain that o € (C})% and o € (C2)Z, which violates the disjoint-
ness between the classes C} and CZ, in contradiction to Z being a model of Dg.
Hence, C; is unsatisfiable, and therefore D¢ is not fully satisfiable.

(<) Assume that ¢ is not reachable from s in G. We construct a full model
T of Dg. Let AT = {ds} U Uvev\{s}{dl d?}. Define inductively a sequence of

v v
interpretations as follows:

70 .= (AI, -IO), such that:
T = {d,}, CF ={d},Vie{l,2},veV\{s}
ntl = (AI, -Inﬂ), such that:

crt =o'y (cf”ucﬂ")

u

(u,s)EE
ntl T _n n
o’ =c’u |y au | cf
(uw)EE, u#s (s,v)EE

The definition induces a monotone operator over a complete lattice, and hence
it has a fixed point. Let Z be defined by such a fixed point. It is easy to check
that 7 is such that for all ¢ € {1,2}, and u,v € V' \ {s} the following holds:

For each class C?, we have that d! € C¢Z.

ds € CT.

For all d € AT, d € C.Z implies d € CiT iff v is reachable from v in G.

For all di, € AT, di, € CJT for i # j iff s is reachable from u in G, and v is
reachable from s in G.

5. ds € C'T iff v is reachable from s in G.

=

From (1) and (2) we have that all classes in D¢ are populated in Z. It remains
to show that Z satisfies Dg. A generalization between the classes C? and C?
corresponds to the edge (u,v) € E. This means that v is reachable from u in
G, and therefore, by (3) we have that C:Z C CiZ. A similar argument holds for
generalizations involving the class C. Furthermore, the classes C} and C? are
disjoint under Z. To show this, suppose that there is an element d € A such
that d € O} NC?Z. Then by (5), d # ds, as t is not reachable from s. Moreover,
d # d for all i € {1,2} and v € V \ {s}. Indeed, suppose w.l.o.g. that i = 1.
Then, by (4), d} € C?7 iff s is reachable from v, and ¢ is reachable from s, which
leads to a contradiction. Hence, C}Z N C2% = . 0
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Classes Associations Complexity
Language|1sA disjoint complete|ISA multiplicity refinement
UML v v v v v v ExXPTIME
UML 001 v v v X v v NP
UML,f v v X X v v NLOGSPACE

Table 1. Complexity results for full satisfiability in UML

Theorem 11. Full-satisfiability of UMLye class diagrams is NLOGSPACE-
complete.

Proof. The NLOGSPACE membership follows from the NLOGSPACE membership
of class satisfiability [1], and a reduction similar to the one used in Theorem 9.
Since NLOGSPACE = CONLOGSPACE (by the Immerman-Szelepcsényi theorem;
see, e.g., [14]), and as the above reduction is logspace bounded, it follows that
full consistency of UML,. class diagrams is NLOGSPACE-hard. ad

5 Conclusions

This paper investigates the problem of full satisfiability in the context of UML
class diagrams, i.e., whether there is at least one model of the diagram where
each class and association is non-empty. Our results (reported in Table 1) show
that the complexity of full satisfiability matches the complexity of the classical
class diagram satisfiability check. We show a similar result also for the problem
of checking the full satisfiability of a TBox expressed in the description logic
ALC.
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1 Introduction

Eight years ago, Tim Berners-Lee, James Hendler and Ora Lassila published their sem-
inal paper [6] describing the evolution of the current web from a human-processable
environment to a machine-processable one. The basic idea was to annotate web re-
sources and give them a machine-processable meaning; the Semantic Web was born.
Many efforts have been placed in the last years by the Semantic Web community in the
attempt to standardize both the language for representing the content of web resources
and the production of annotations/metadata. On the one hand, such efforts successfully
led to the affirmation of standard languages for machine-processable representation of
web pages content, like the recent W3C recommendation OWL2. On the other hand, it
produced the Linked Data initiative: a set of best practices for publishing and connect-
ing data on the Web. These two initiatives are tightly connected. In fact, data published
following the Linked Data best practices are interpreted thanks to the ontological layer
developed using OWL2. Despite a large effort in annotating and representing the se-
mantic content of a resource (in a semi-automatic way) we see the lack of reasoning
engines able to fully exploit such representation power. During the last years highly op-
timized reasoning engines have been developed for classical deductive reasoning tasks
such as subsumption/classification, consistency checking and instance retrieval. At the
same time, non-standard reasoning tasks have been proposed in the Description Logics
literature as an answer to new issues related to knowledge-based domains especially in
retrieval scenarios, ontology design and maintenance and automated negotiation. The
most relevant reasoning tasks we may cite are: explanation [18], interpolation [23],
concept abduction and concept contraction [10], concept unification [3], concept differ-
ence [25], concept similarity [8], concept rewriting [2], negotiation [22], least common
subsumer [5], most specific concept [1] and knowledge base completion [4].

For each of the above mentioned tasks a specific algorithmic approach has been
proposed and very often only for a particular (sometimes simple) Description Logic.
Although the need for such reasoning tasks has been widely recognized, there is not
yet a unified view—at least from an algorithmic perspective. Indeed, some of the above
mentioned tasks share some properties from a computational point of view and some-
times are very related to each other. Moreover, most of the problems in the cited reason-
ing tasks are of the form: “Find one or more concept(s) C' such that {sentence involving
C' }” and we are really interested in exhibiting such a concept, not just proving its ex-
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istence. In other words, many of the above mentioned reasoning tasks, known as non-
standard reasoning, deal with finding—or constructing—a concept. This is the main
reason why we refer to such reasoning as constructive reasoning. By contrast, “stan-
dard” reasoning is about checking some property (true or false) such as subsumption or
satisfiability (also query answering can be reduced to instance checking).

In this paper we propose a new second-order framework and a related calculus able
to express, in a uniform way, many of the abovementioned constructive reasoning tasks.

The remainder of the paper is structured as follows: in Section 2 we introduce the
framework and its formal semantics. Section 3 is devoted to the reformulation of some
relevant contructive reasoning tasks in terms of second order formulas. The general
calculus is presented in Section 4, before providing a section on “discussion and future
directions”.

2 Semantics

We denote by DL a generic Description Logic. Only in order to exemplify our frame-
work, consider the presentation of the DL SHZ Q.

Let N, be a set of role names. A general role R can be either a role name P € N,.,
or its inverse, denoted by P~. We admit a set of role axioms, formed by: (1) a role
hierarchy 'H, which is a set of role inclusions of the form R; T Rs, and (2) a set of
transitivity axioms for roles, denoted by Trans([R). We denote by C* the transitive-
reflexive closure of H U{R™ T S~ | S T R € H}. Arole S is simple if it is not
transitive, and for no R such that R T”* S, R is transitive.

In the following syntax for concepts, let A be a generic concept name in a set N, of
concept names.

C—T|L|A|>nS.C|<nS.C|CiNCy|~C (1)

We consider the other well-known constructs as abbreviations: C; LI Co = —(=(C1) M
-(C3)), 3R.C = >1R.C, VR.C = <0R.~C. For computability reasons, only in
JR.C,VR.C the role R can be a general role (i.e., also a transitive role, or a super-role
of a transitive role), while in other number restrictions R must be a simple role.

Every DL is equipped with a model-theoretic semantics. Again, exemplifying our
discussion for SHZ Q, an interpretation T is a pair (AT, -) where AZ is a set of indi-
viduals, and -Z is an interpretation function mapping T into A%, L into ), each concept
name A € N, into a subset of AZ, and each role name P € N, into a subset of
AT x AT, and extended to concept and role expressions as follows (let #{...} denote
the cardinality of a set):

¢t = AT - AT 2)
>nRCT ={aec AT |#{bec AT | (a,b) e R Abec CT} > n} (3)
<nRCT={ac AT |g{bec AT | (a,b) € RE A€ CT} < n} “)

(CLNCy)E = (C)F N (Cyr)F 6))

(P)E = {(b,a) € AT x AT | (a,b) € PT} (6)



Simona Colucci, et al. 69

As usual, we denote by C' T D the proposition “for every interpretation Z (satisfying
role axioms), CZ C DZ”. We also denote non-subsumption by C' [Z D, meaning the
proposition “there exists an interpretation Z satisfying role axioms such that CZ ¢
D7 Observe that C T D, C Z D are propositions (true or false), so they can be
combined by A, V in a propositional formula I". We say that I" is true iff the composition
of truth values of subsumptions and non-subsumptions yields true.

Second-order Concept Expressions. In order to write second-order formulas, we
need a set N, = {Xo, X1, X>, ...} of concept variables, which we can quantify over.

A concept term is a concept formed according to the rules in (1) plus the rule C —
X for X € N,. Forexample, AN X,MV(P~).(X1M3Q.X>) is a concept term. Although
also role variables could be conceived, we do not need them here. We stress the fact that
concept terms could be defined starting from the syntax of every Description Logic DL,
not just SHZ Q. We denote by DL x the language of concept terms obtained from DL
by adding concept variables.

We use general semantics [15]—also acknowledged as Henkin structures [27]—for
interpreting concept variables. In such a semantics, variables denoting unary predicates
can be interpreted only by some subsets among all the ones in the powerset of the
domain 2AI—instead, in standard semantics a concept variable could be interpreted as
any subset of AT Note that Baader and Narendran [3] use standard semantics in their
paper on concept unification.

Adapting general semantics to our problem, the structure we consider is exactly the
sets interpreting concepts in DL. That is, the interpretation X7 of a concept variable X
must coincide with the interpretation EZ of some concept E € DL. Moreover, since
we are interested in particular existential second-order formulas, we limit our definition
to such formulas.

Definition 1 (General Semantics). Let Cy,...,Cy,, D1,...,D,, € DL be concept
terms containing concept variables Xy, X1,...,X,, and let I' be a conjunction of
concept subsumptions and non-subsumptions, of the form

FZ(Cl EDl)/\---/\(CgEDg)/\(Og_H‘,ZDg_H)/\---/\(CmZDm) @)

for1l < ¢ < m. We say that I is satisfiable in DL if and only if there exist n+1 concepts
FEn, ..., E, € DL such that, extending the semantics (2)—(6) for each interpretation Z,
with: (X;)T = (E;)* fori=0,...,n, it holds that

1. forevery j = 1,...,{, and for every interpretation I, (C;)* C (D;)* and
2. forevery j ={+1,...,m, there exists an interpretation T s.t. (C;)* ¢ (D).

Otherwise, I' is said to be unsatisfiable in DL . Moreover, we say that the formula
1Xy---3X,,.I° (8)
is true in DL if I is satisfiable in DL, otherwise it is false.

Note that we are considering here only a particular form of closed second-order
formulas in Description Logics. This is because we are not interested here in Second-
order Description Logics by themselves, but only in their use to express and compute
the “constructive” reasoning services of the next section.
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3 Modeling Constructive Reasoning Tasks

Hereafter we show how to model some constructive reasoning tasks in trems of formula
(8). In this section we only show the constructive formulation of the task and we leave
discussion on optimality criteria at the end of the section. The computation of the Most
Specific Concept as well as a Knowledge Base Completion could be easily modeled if
we allowed in I" formulas involving an ABox or a TBox.

We introduce the notion of signature of a concept that is used in Interpolation and
Concept Unification. Given a concept C' we define:

sign(C)n, = {A | A € N, A appears syntactically in C'}
sign(C)n, = {P | P € N,,, P appears syntactically in C'}
sign(C) = sign(C)n, U sign(C)n,

Least Common Subsumer. A concept D € DL is a Common Subsumer of two
concepts C1,Cy € DL if (C; C D) A (Cy E D). The Least Common Subsumer
(LCS) of C1, Cs is the least element w.r.t. C of the set of concepts which are Common
Subsumers of C7,C5 and is unique up to equivalence. A concept L is not the Least
Common Subsumer of C7, Cy iff the following formula (of the form (8)) is true in DL:

IX(CLEX)A(Co T X)A(X T L)A(LEZ X)

that is, L is not the LCS if there exists a concept X which is a Common Subsumer, and
is strictly more specific than L. By finding a concept satisfying the above formula, and
iterating the process, an algorithm for computing the LCS in a sublanguage of SHZQ
has been proposed [12].

Interpolation. Interpolation have been proposed in Description Logics for different
purposes. In [23], the computation of an interpolant is used to explain subsumption, if it
exists, between two concepts C' and D. Konev et al. [16] use the notion of interpolation
for a TBox 7 in order to forget part of the vocabulary adopted in 7 and reason on a
smaller ontology. Seylan et al. [24] need the computation of an interpolant between two
concepts to rewrite a query in terms of DBox predicates.

Definition 2 (Interpolation). Given two concepts C and D in DL such that C C D,
an interpolant of C and D is a concept I such that:

- sign(I) C sign(C) U sign(D);
—bothCC IandIC D.

Given two concepts C' and D such that C' = D, the corresponding interpolant satisfies
the formula (C'C X) A (X C D) of the form (7).

Abduction. Abduction in Description Logics has been recognized as an interesting
reasoning procedure for a set of heterogeneous tasks [10, 17,24, 7,21]. Here we mainly
concentrate on Concept Abduction as defined in [10] and Structural Abduction [11] but
the formalization can be easily extended to other abductive procedures [13]. Concept
Abduction is a straight adaptation of Propositional Abduction.
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Definition 3 (Concept Abduction). Let C, D, be two concepts in DL where both C
and D are satisfiable. A Concept Abduction Problem (CAP) is finding a concept H €
DL suchthat CTMH L 1, and CTT H C D.

Every solution H of a CAP satisfies the formula
(CNXEZL)A(CNXLCD)

Such solutions can be compared by C, preferring the subsumption-maximal ones, since
they are the solutions hypothesizing the least. Moreover, a formula of the form (8) can
characterize the complement of being subsumption-maximal. A concept H is not a
subsumption-maximal solution of a CAP iff the formula is true in DL:

IX(CNXZLACTXCD)AHLCX)A(X Z H)

In order to deal with Abduction for expressive Description Logics, a more fine
grained definition of Abduction was introduced in [11] with the name of Structural Ab-
duction. The notion of Structural Abduction relies on the notion of Adbucible Concept
and Hypotheses List we report here for the sake of completeness.

Definition 4 (Abducible Concept — Hypotheses List). Let C and D be two con-
cepts in DL. We define abducible concept C" = Hy 1 Rew(C'), where the rewrit-
ing Rew(C) is defined recursively as Rew(A) = A; Rew(—A) = —A; Rew(Cy N
C3) = Rew(C1) M Rew(Cy); Rew(Cy UCs) = Rew(Ch) U Rew(Cs); Rew(IR.C) =
AR.(Hpew M Rew(C)); Rew(VR.C) = VR.(Hypew M Rew(C)) where by Hyeoy We
mean a concept variable not yet appearing in the rewriting. We call hypotheses list of

C" the list H = (Hy, Hy, Ha, .. .).

Definition 5 (Structural Abduction). Let C, D € DL, be two concepts where both C
and D are satisfiable C VD Z 1. Let H = (Hy, ..., Hy) be the hypotheses list of
the abducible concept C" and A = (Ao, ..., As) (for Assumptions) be a list of DL
concept sets. A Structural Abduction Problem (SAP) for DL is finding a list of concepts
H = (Hy, ..., Hy) such that

H; € A; foreveryi=0,...,¢ 9)
T f o[H/H)(C") E L (10)
T = o[H/H)(C")ED (11)

We call a SAP General when A; = DL, foreveryi =0, ... L.

Let C® be as C" with X; in place of H; fori = 0,..., /. Then, Hy, ..., Hy is a solution
of a SAP iff it satisfies the formula (C® Z L) A (C* C D) by letting (X;)? = (H;)*
forevery 7 and every ¢ = 0, ..., /.

Concept Contraction. Girdenfors [14] distinguishes three main kinds of belief
changes: (i) expansion, (ii) revision, (iii) contraction. Given two concepts C' and D
such that C' 1 D C 1, Concept Contraction is the DL-based version of contraction.

Definition 6 (Concept Contraction). Let C, D both satisfiable. A Concept Contrac-
tion Problem (CCP) is finding a pair of concepts (G, K) (Give up, Keep) such that
C=GnNK,and KNDIZ 1. Wecall K a contraction of C according to D.
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Every solution (G, K') of a CCP satisfies the formula
(CEXO|_|X1)/\(X1 |_|D,|ZJ_)

Such solutions can be compared by C, preferring the ones whose G’s are subsumption-
maximal, since they are the solutions contracting the least. Moreover, a formula of
the form (8) can characterize the non-preferred contractions. A pair (G, K) is not a
preferred solution of a CCP iff the following formula is true in DL:

ﬂXoﬂXl(C = X() le) AN (Xl nbD z L) AN (G C XO) AN (X() Z G)

Concept Unification. Concept Unification [3] between two concepts C' and D
arises when one wants to rewrite some concept names occurring in C' and D in order to
make the relation C' = D true.

Definition 7. Let C and D be two concepts in DL such that C % D. We define the
wo sets X¢ = {A¢ | i = 1,...,1} and XP = {AP | j = 1,...,m} such that
XC C sign(C)n, and XP C sign(D)n,. A Unification Problem is finding the set of
rewriting rules M: AY — Cy;...; AZC — Oy, AP — Dy;...; AP — D, such that

sign(C;) C sign(C) Usign(D), withi=1,...,1
sign(D;) C sign(C) U sign(D), withj =1,...,m

CEMD

The Unification problem is solvable iff the following formula (of the form (8)) is true
in DL:
JAC, ... AC AP AP (cC D)A(DCO)

treating X, AP as concept variables interpreted in General Semantics.

Concept Difference. Following the algebraic approaches adopted in classical infor-
mation retrieval, Concept Difference [25] was introduced as a way to measure concept
similarity.

Definition 8. Let C' and D be two concepts such that C' = D. The Concept Difference
C — D is defined by maxc{B € DL such that DN B = C'}.

We can use a formula of the form (8) to check whether a concept B is not a difference
between C' and D, namely, B is not a Difference iff the formula below is true:

AX.(CCDNX)ADNXCZC)A(XCTB)A(BYZ X)

Negotiation. The aim of a negotiation process is to find an agreement between
two competitive parties. Both agreement and requirements from the two parties can be
represented as (a conjunction of) concepts [22]. Usually, in a negotiation the parties
requirements are in conflict with each other. Hence, in order to reach an agreement they
have to give up some parts of their requirements. During a negotiation the two parties
have to agree on and follow a protocol (i.e., a set of rules that characterize the specific
process). Here we define a simple protocol where given the initial requirements W
and W, if they are in conflict with each other, then the two parties ¢ and d propose a
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relaxed version W and TW* of W§ and W¢. The final aim of the protocol is to satisfy
as much as possible both agents with the final agreement. At the first round they relax
their requirements keeping the minimal information they want to be satisfied by the
final agreement and propose W< and W< such that W¢ C W< and W C W<. For
each following round i they propose least relaxed version of W¢§ and W¢ which are
more specific of the proposals at round ¢ — 1 !. The protocol stops either if the max
number M AX of rounds has been reached or when it does not exist a concept both
more specific than the one found at the previous round and less specific than the initial
requirements.

Input: concepts W§, W& such that W MW C L
Output: the final outcome of the negotiation after n rounds. If ¢ and d reach an agreement
the returned value is (W, wé ) NULL otherwise.

1 begin

2 We =Wt

3 Wi=w

4 i = 0; flag = continue;

5 while (i < MAX) A (flag == continue) do

6 AW WL W AW Z L)A W TW) AW T W) AW T

W) A (W T W) then

7 We=w-,

8 wd=w?.

9 else

10 flag = stop;

11 1 =1+ 1;

12 if flag == stop then
13 return (W°, W9);
14 else

15 return NULL;

16 end

Algorithm 1: A simple negotiation protocol

Optimal Solutions. We may classify the above reasoning tasks into two main cat-
egories: tasks for which we just need to compute a concept (or a set of concepts) as
Concept Unification and Interpolation and those for which we need to find a concept
(or a set of concepts) according to some minimality/maximality criteria such as LCS,
Concept Difference, Concept Abduction, Concept Contraction and Negotiation. In the
first case, we have a set of solutions while in the second one we also have a set of
sub-optimal solutions to the main problem. As an example, for LCS we have the set of
sub-optimal solution represented by “common subsumers”. Based on this observation,
we may think of a procedure that computes a sub-optimal solution X * at step  and then

— —d . s
! The way W and W* are computed at each step should take into account also agents’ prefer-
ences. For the sake of conciseness we omit such details.
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iteratively computes a better solution X+ at the next step. The procedure stops (if de-
cidable) when no better solution can be found according to the minimality/maximality
criterion. In case the procedure is not decidable, we may decide to iterate for a maxi-
mum number of steps. In this case, the procedure returns a sub-optimal solution to the
problem. In other words, this means that we may apply a procedure similar to the nego-
tiation protocol described above to other constructive reasoning every time we need to
satisfy optimal criteria.

4 A Calculus

Definition 9 (Substitutions).

1. Let DL be a Description Logic, {i1,...,it} C {0,1,...,n} be a set of distinct
indexes, X;,, ..., X, be concept variables, and D;, , ...,D;, € DLx be concept
terms. A substitution o is a set of pairs {[X;, /Di,], - .., [Xs,/D;,]} A substitution
is ground if every D;, contains no variables, i.e., D;; € DL.

2. For a concept term C € (SHZQ)x, we inductively define o(C) as o(X;) = D,,
o(=X;) ==(a(Dy)), 0(A) = A o(C1MCs) = o(Cy)No(Cs), o(xinR.C) =
nR.o(C) for=e {<, >}

3. For concept terms C, D, we define also 0(C E D) = o(C) C o(D), o(C £ D) =
o(C) £ o(D), and for a boolean conjunction I of the form (7), o(I') is the result
of applying o to every subsumption and non-subsumption statement.

By using substitutions, a formula of the form (8) is true according to Def.1 if and only if
there exists a ground substitution making it valid, as formalized by the theorem below.

Theorem 1. A formula 31X - --3X,,.I" is true in DL iff there exists a ground substitu-
tion o = {[Xo/Eol, ..., [ Xn/En]} with Ey, ..., E, € DL, such that o(I") is true.

Observe that since ¢ is ground, and substitutes every variable in I', o(I") is just a
boolean combination of [non-Jsubsumptions in SHZ Q. Observe also that if standard
semantics is adopted for concept variables [3] instead of Def.1—that is, if X T can be
any subset of AZ—then the “only if” part of the above theorem no longer holds, since
there can be statements for which X7 is not expressible in the target DL, yielding no
substitution. For example, formula 3X.(AC X)A (BC X) A (T Z X) is false in a
DL without U (disjunction), but it would be true in standard semantics: just let for every
7, XT = ATu B~

We present now a simple calculus, obtained by combining Analytic Tableaux for
ordinary concept constructors, and substitutions for concept variables. Then we prove
its soundness and completeness. Again, we present the calculus for the DL SHZQ,
but only for sake of clarity; the same framework could be adopted for other DLs. We
borrow Tableaux rules (T-rules; see below) from well-known results of Tobies [26].
Since inverse roles are present in SHZ Q, we use pairwise blocking for individuals [26,
p.125].

All rules are applicable only if z 18 not blocked. For each ¢ = 1, ..., n, L; is a branch
in 7;. Rules above the separating line have precedence over rules below it.
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M-rule :if CND e L;(x),

then add both C' and D to £;(x)
U-rule :if CUD € L;(x),

then add either C or D to £;(x)

V-rule :if VR.C € L;(z), and there exists an individual y such that y is an R-

successor of x,
then add C to £;(y)

<-rule :if <nS.C € L;(x) withn > 1, and
there are m > n S-neighbors (say) y1, ..., ym of z with C' € L;(y;)
fory=1,...,m,
v,z € {y1,...,Yym} with y being an S-successor of = and not y # z
then (1)add £;(y) to L;(z),
(2) forevery R € L;(x,y) if z is a predecessor of x then add R~
to L£;(z,x) else add R to L;(x, z),
(3) let £;(z,y) = 0, and
(4) for all u with u # y, set u # z
Vi-rule :if VS.C € L;(z), with Trans(R) and R C* S, there exists an individ-
ual y such that y is an R-successor of x, and VR.C & L;(y),
then add VR.C to L;(y)

choose-rule :if xxnS.D € £;(x), with € {>, <} and there is an S-neighbor y of x
then add either D or —D to £;(y)

J-rule :if IR.C € L;(z), and x has no R-successor y with C' € L;(y),
then pick up a new individual y, add R to L(x,y), and let £;(y) :=

{C}
>-rule :if >nS.C € £;(x), and = has not n S-neighbors y1, ..., y, with yp #
y; for1 <4 < j < n,
then create n new successors ¥y, ..., ¥y, of x with £;(x,y,) = {S},
Li(y) ={C},andy, #yj,forl <L < j<n

A branch £ is closed if, for some individual z, either 1 € L(x), or {A,-A} C
L(z) for some concept name A, or <n S.C' € L(x) and z has in £ m S-neighbors
Y1y Ym Withm > n, with C' € L(y;) and y; # y; for 1 <i < j < m. We call such
a situation a clash. A tableau is closed if all its branches are closed. A branch is open if
it is not closed, and no T-rule can be applied to it. A tableau is open if it has at least one
open branch.

In order to prove a formula of the form (8), each [non-]subsumption in I" is associ-
ated with a tableau. For a sentence C; = D;, the calculus aims at closing the tableau 7;
that starts with the single branch

Li(a;) = {C;,~D;} (12)
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with a; being an individual. For a sentence C; £ D, the calculus, starting with 7; as be-
fore, aims at obtaining an open tableau. We call system the n + 1-tuple (71, ..., T, 0),
made of the n tableaux and the substitution on the variables. The system always starts
with o = (). Substitution rules (S-rules) are presented below. We denote the appli-
cation of the substitution 6 to (71,...,7m,0) by 0(r1,..., T, o) and its result is
O(11),...,0(m),0U0).

All rules are applicable only if £ is open, and the substitution is not o-blocked.
Rules above the separating line have precedence over rules below it.

oT-rule :apply [X/T]to (71,...,Tm,0)
oN-rule : apply [X/A]to (11,...,Tm,0)

o—-rule : apply [X/—Y] to (71,...,Tm,0), where Y denotes a concept variable not
appearing in (71, ..., Tm, 0)

o=-rule :apply [X/>m R.Y]to (1y,...,Tm,0), where Y denotes a concept variable
not appearing in (71, ..., s, 0), and if m > 1 then R is a simple role

o<-rule : apply [X/<nR.Y|to (11,...,Tm,0), where Y denotes a concept variable
not appearing in (71, ..., Ty, 0), and if n > 0 then R is a simple role

oM-rule : apply [X/Y1MY3]to (71,...,Tm,0), where Y7, Y5 denote concept variables
not appearing in (71, ..., Tm, 0)

Note that T-rules are applied separately to each branch of each tableau, while S-rules
are applied to all branches of all tableaux at the same time.

An S-rule r is o-blocked for X € L;(x)in {(T1,...,Tm,0) if(71,...,Tm, o) derives

from some (7{,...,7},,0’), in which there is some individual z’ such that: (i) X' €
Li(x"), (i) L;(x) = L(2"), (i) for every R-successor y of x in L;, there exists an
R-successor y' of 2’ in £} such that £;(y) = L;(y’), (iv) for every S, the number of
different S-neighbors of x in £; is the same as the number of different S-neighbors of
z’ in £}, and (v) Rule 7 has been applied to £} in (7{,...,7},,0').
Theorem 2 (Soundness). Let I be as in (7). If the calculus of T- and S-rules, starting
with 7; as in (12) and o = 0, yields a system {11, ...,Tm,0) in which T; is closed for
i =1,...,¢ and 7 is open for j = £+ 1,...,m, then there exists a substitution o’
such that o' (I) is true.

Proof. Let ¢’ be ¢ in which every remaining unsubstituted concept variable is substi-
tuted with a different concept name A never appearing in I". Since T-rules are sound,
each closed tableau 7; for i = 1,...,¢ is a proof that o(C;) C o(D;), and the same
is also a proof for ¢’(C;) T o’(D;). Moreover, since T-rules are complete, each open
tableau 7; for j = £+ 1,...,mis a proof that o (C;) £ o(D;), and the same remains a
proof for o’ (C;) I ¢'(Dj), since remaining variables are substituted by unconstrained
concept names. O
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Theorem 3 (Completeness). Let I be as in (7). If there exists a substitution o such
that o(I") is true, then there is a way of applying T- and S-rules that yields a system
(T1,. .., Tm,0) in which 7; is closed for i = 1,...,¢, and T; is open for j = { +
1,....,m.

Proof. Since S-rules mimic SHZ Q syntax (1), every ground substitution o can be re-
constructed by repeated applications of S-rules. If one decides to apply all these S-

rules at once, one gets a system (7{,...,7/,,0’) in which each 7; has one branch
Li(a;) = {o(C;),0(—D;)}, and o/ = o. Now since T-rules are sound and complete,
their application yields closed tableaux 7; for 7 = 1,...,¢, and open tableaux 7; for
j=L0+1,...,m. m]

Soundness and completeness of the above calculus, together with undecidability re-
sults for specific problems such as unification in SHZ [28], imply that there are infinite
instances in which the calculus does not terminate. However, for specific classes of for-
mulas of the form (8), a termination proof can be devised on the basis of o-blocking
[12], which prevents the application of S-rules.

5 Discussion and Future Work

Some related work [3, 12] has been already compared within the technical sections of
the paper. In addition, some researchers proposed and studied the use of Higher-order
DLs for meta-modeling purposes. More specifically, Pan& Horrocks [20] propose a
stratified Higher-order DL (OWL FA) to cope with meta-assertions about concepts and
roles; OWL FA is incomparable with any DL x, since on one side, higher-order asser-
tions can be made, but on the other side, concept variables are not admitted. Motik [19]
proves that satisfiability in Higer-order ALCQO, which is a fragment of OWL Faull, is un-
decidable; his proof could not be rephrased in (SHZ Q) x, since it exploits the feature
O to construct concepts starting from individuals. Motik also proposes a Higher-order
DL with two possible semantics, but again, he does not consider concept variables. De
Giacomo et al. [9] augment a DL with variables that may be interpreted—in a Henkin
semantics—as individuals, concepts, and roles at the same time, obtaining a new logic
Hi(DL). Also this extension is incomparable with any DL x, since on one side one can
express in Hi(DL) arbitrarily higher-order concepts that are not expressible in DL x,
while in DL x one can form complex concept terms that are not allowed in Hi(DL),
such as JR.X.

The innovative potential of the paper mainly lays in the investigation on non-standard
reasoning services apparently far from each other under a unifying lens. Such a unifica-
tion effort paves the way to important generalization results both in the definition and in
the solution of problems expressible according to the proposed framework. In particu-
lar, on the one hand we exploit the property that many non-standard reasoning services
are devoted to the “construction of an objective concept” in order to model all of them
as Constructive Reasoning Tasks trough special Second-order sentences in DLs; on the
other hand we propose a unified calculus aimed at the design and implementation of a
unique system able to solve any non-standard reasoning tasks, whose investigation is
object of our current and future research work.
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1 Introduction and Motivation

Description logics (DLs) [1] provide a logical foundation for modern ontology
languages such as OWL! and OWL 2 [2]. ££7T [3] is a lightweight DL for
which reasoning is tractable (i.e., can be performed in time that is polynomial
w.r.t. the size of the input), and that offers sufficient expressivity for a num-
ber of life-sciences ontologies, such as SNOMED CT [4] or the Gene Ontology
[5]. Among other constructors, E£L1" supports limited usage of datatypes. In
DL, datatypes (also called concrete domains) can be used to define new con-
cepts by referring to particular values, such as strings or integers. For exam-
ple, the concept Human M JhasAge.(<, 18) M JhasName.(=,“Alice”) describes hu-
mans, named “Alice”, whose age is less than 18. Datatypes are described first
by the domain their values can come from and also by the relations that can be
used to constrain possible values. In our example, (<, 18) refers to the domain
of natural numbers and uses the relation “<” to constrain possible values to
those less than 18, while (=, “Alice”) refers to the domain of strings and uses the
relation “=” to constrain the value to “Alice”.

In order to ensure that reasoning remains polynomial, £ allows only for
datatypes which satisfy a condition called p-admissibility [3]. In an nutshell, this
condition ensures that the satisfiability of datatype constraints can be solved
in polynomial time, and that concept disjunction cannot be expressed using
datatype concepts. For example, if we were to allow both < and > for integers,
then we could express A C B U C by formulating the axioms A C 3R.(<,5),
JR.(<,2) C B and 3R.(>,2) C C. Similarly, we can show that p-admissibility
does not allow for both < (or >) and =. For this reason, the EL Profile of OWL
2, which is based on £, admits only equality (=) in datatype expressions.

In this paper, we demonstrate how these restrictions can be significantly
relaxed without loosing tractability. As a motivating example, consider the fol-
lowing two axioms which might be used, e.g., in a pharmacy-related ontology:

£++

Panadol C Jcontains.(Paracetamol 1M ImgPerTablet.(=, 500)) (1)

Patient M JhasAge.(<,6) M
JhasPrescription.3contains.(Paracetamol M ImgPerTablet.(>,250)) C L

(2)

! http://www.w3. org/2004/0WL
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Axiom (1) states that the drug Panadol contains 500 mg of paracetamol per
tablet, while axiom (2) states that a drug that contains more than 250 mg of
paracetamol per tablet must not be prescribed to a patient younger than 6
years old. The ontology could be used, for example, to support clinical staff who
want to check whether Panadol can be prescribed to a 3-year-old patient. This
can easily be achieved by checking whether concept (3) is satisfiable w.r.t. the
ontology:

Patient M 3hasAge.(=, 3) M 3hasPrescription.Panadol (3)

Unfortunately, this is not possible using E£7T, because axioms (1) and (2)
involve both equality (=) and inequalities (<, >), and this violates the p-
admissibility restriction. In this paper we demonstrate that it is, however, pos-
sible to express axioms (1) and (2) and concept (3) in a tractable extension of
EL. A polynomial classification procedure can then be used to determine the
satisfiability of (3) w.r.t. the ontology by checking if adding an axiom

X C Patient M JhasAge.(=, 3) M JhasPrescription.Panadol

for some new concept name X would entail X C L.

Our idea is based on the intuition that equality in (1) and (3) serves a different
purpose than inequalities do in (2). Equality in (1) and (3) is used to state a fact
(the content of a drug and the age of a patient) whereas inequalities in (2) are
used to trigger a rule (what happens if a certain quantity of drug is prescribed
to a patient of a certain age). In other words, equality is used positively and
inequalities are used negatively. It seems reasonable to assume that positive
usages of datatypes will typically involve equality since a fact can usually be
precisely stated. On the other hand, it seems reasonable to assume that negative
occurrences of datatypes will typically involve equality as well as inequalities
since a rule usually applies to a range of situations. In this paper, we make a
fine-grained study of datatypes in £L by considering restrictions not only on the
kinds of relations included in a datatype, but also on whether the relations can
be used positively or negatively. The main contributions of this paper can be
summarised as follows:

1. We introduce the notion of a Numerical Datatype with Restrictions (NDR)
that specifies the domain of the datatype, the datatype relations that can
be used positively and the datatype relations that can be used negatively.

2. We extend the £L reasoning algorithm [3] to provide a polynomial reasoning
procedure for an extension of ££ with NDRs, where the procedure is sound
for any NDR.

3. We introduce the notion of a safe NDR, show that every extension of ££ with
a safe NDR is tractable and prove that our reasoning procedure is complete
for any safe NDR.

4. Finally, we provide a complete classification of safe NDRs for the cases of
natural numbers, integers, rationals and reals. Notably, we demonstrate that
the numerical datatype restrictions can be significantly relaxed by allowing
arbitrary numerical relations to occur negatively—not only equality as cur-
rently specified in the OWL 2 EL Profile. As argued earlier, this combination
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Table 1. Concept descriptions in ££*(D)

NAME SYNTAX SEMANTICS
Concept name C c*
Top T AT
Bottom 1 0
Conjunction cnbD ctnp?

Existential restriction 3IR.C  {z € AT |y e AT : (z,y) € RF Ay € CT}
Datatype restriction ~ 3F.r {xe AT |FweD: (z,v) € FI Ar(v)}

is of particular interest to ontology engineering, and is thus a strong candi-
date for the next extension of the EL Profile in OWL 2.

2 Preliminaries

In this section we introduce E£*(D), an extension of EL£* [3] with numerical
datatypes. In the DL literature datatypes are better known as concrete domains
[6]; we call them datatypes to be more consistent with OWL 2 [2]. The syntax
of EL1(D) uses a set of concept names N¢, a set of role names N and a set of
feature names Ng. ELT(D) is parametrised with a numerical domain D C R (R
is the set of real numbers). N¢, Ni and N are countably infinite sets and, addi-
tionally, pairwise disjoint. We call (s,y), where s € {<,<,>,> =}and y € D, a
D-datatype restriction (or simply a datatype restriction if the domain D is clear
from the context). Given a D-datatype restriction r = (s,y) and an z € D, we
say that x satisfies r and we write r(x) iff (z,y) € s, where s € {<, <, >, >, =}
and s is interpreted as the standard relation on real numbers. Table 1 recursively
defines concepts in SEJ‘(D), where C' and D are concepts, R € N, F' € Np
and 7 is a D-datatype restriction. An aziom o (in EL(D)) is an expression of
the form C' C D, where C and D are concepts. An (££1(D)—)ontology O is a
set of axioms. A concept FE is said to positively (negatively) occur in an axiom
C C Diff it occurs in D (C). An interpretation of E£(D) is a pair T = (A%, 7),
where AZ is a non-empty set, the domain of the interpretation, and -T is the in-
terpretation function. The interpretation function maps each A € N¢ to a set
AT C A%, cach R € Npg to a relation RT C AT x AT and each F € Ny to a
relation FZ C AT x D. Note that we do not require the interpretation of features
to be functional. In this respect, they correspond to the data properties in OWL
2 [2]. The constructors of ££>(D) are interpreted as indicated in Table 1. An
interpretation I satisfies an aziom o = C C D iff C7 C D* (written Z = ). If
T & a for every a € O, then T is a model of O (written Z = O). If every model
T of O satisfies the axiom « then we say that O entails o and we write O = a.
We define the signature of an ontology O as the set sig(Q) of concept, role and
feature names that occur in @. We say that an axiom in ££*(D) is in normal
form if it has one of the forms: A C B’ (NF1), A; M A C B (NF2), AC 3R.B
(NF3), 3R.BC A (NF4), AC 3F.r (NF5) or 3F.r C A (NF6), where A, Ay, As,
B € Ng, B € Ng’l, R € Ng, F € Np and r is a D-datatype restriction. The
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normalization procedure is the same as for the E£7 [3]; more details can be
found in the technical report [7]. (N = No U{T}, Ng’l =NcU{T,1}).

3 Numerical Datatypes with Restrictions

In this section we introduce the notion of a Numerical Datatype with Restric-
tions (NDR) which specifies which datatype relations can be used positively and
negatively. We then present a sound polynomial consequence-based classification
procedure for ££+ extended with NDRs. Finally we prove that the procedure is
complete if the NDR satisfies special safety requirements.

Definition 1 (Numerical Datatype with Restrictions). A numerical data-
type with restrictions (NDR) is a triple (D,O4,0_), where D C R is a numeri-
cal domain and O4,0_ C {<,<,>,> =} is the set of positive and, respectively,
negative relations. An aziom in EL(D) is an aziom in ELT(D,04,0_) if for
every positive (negative) occurrence of a concept AF.(s,y) in the axiom, s € Oy
(s € O_). An EL(D,04,0_)-ontology is a set of axioms in EL(D,04,0_).

We are going to describe a classification procedure for ££(D,04,0_),
which is closely related to the procedure for ££71 [3]. In order to formulate
inference rules for datatypes we need to introduce notation for satisfiability of
a datatype restriction and implication between datatype restrictions. For two
D-datatype restrictions ry and r_, we write ry. —p r— iff r;(z) implies r_(z),
Vz € D. We write ry —p L iff there is no # € D such that r4(z) holds. In
the opposite cases, we write ry —-p r— and ry -»p L. We assume that deciding
whether v, —p r_ and r; —p L can be done in polynomial time. It is easy to
see that this is the case when D is the set of natural numbers, integers, reals or
rationals for the set of relations {<, <, >, >, =}.

The classification procedure for ££% (D) takes as an input an ontology O
whose axioms are in ££(D) and in normal form and applies the inference rules
in Table 2 to derive new axioms of the form NF1, NF3 and NF5. The rules are
applied to already derived axioms and use existence of axioms in O, r; —p L
or r4 —p r_ as side-conditions. The procedure terminates when no new axiom
can be derived. It is easily checked that the procedure runs in polynomial time
(there are only polynomially many possible axioms of the form NF1, NF3 and
NF5 over sig(Q)) and that the rules in Table 2 are sound (the conclusions of the
rules are logical consequences of their premises).

The completeness proof is based on the canonical model construction simi-
larly as for £ [3]. In order to deal with datatypes in the canonical model we
introduce a notion of a datatype constraint. Intuitively, a constraint specifies
which datatype restrictions should hold in a given element of the model and
which should not.

Definition 2 (Constraint). A constraint over (D,0+,0-) is defined as a
pair of sets (S1,S_), such that Sy = {(si,y1),..., (s, yn)} with s\ € O,
S_={(s1,z1),..., (s, zm)} with s € O_, y;, z; € D, (s, yi) »p (s°,2;)
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Table 2. Reasoning rules in ££(D) (A, B,C,E € Ng,C' e NJ‘L, R € Ng, F € Nr)

ACB
ACB ACC ACB
2 = — BNnCcCCD = B C 3JR.
CR ACD CcC eO CR3 AC IRC C3dRCeO
AC3JR.B BLC AC3JR.B BL L
= = orC =
CR4 ACD dRCCDeO CR5 AC L
ACB
AC3Fr
CD2 ZEB-'— IFr EBeO, ry —»pr-

and (sj_,yi) »p Lforl1 <i<n,1<j<mandm,n>0.A constraint
(S4+,8-) over (D,04,0_) is satisfiable iff there exists a solution of (S4,S_)
that is a set V. C D such that every r4 € Sy is satisfied by at least one v € V
but no r_ € S_ 1is satisfied by any v € V.

Our model construction procedure works only for the cases where we can ensure
that every constraint over a numerical domain is satisfiable. This leads us to a
notion of safety for an NDR.

Definition 3 (NDR Safety). Let (D,04,0_) be an NDR. (D,04,0_) is
safe iff every constraint over (D,O4,0_) is satisfiable.

Definition 4 (Strong and Weak Convexity). The NDR (D,04,0_) is
strongly convex when for every r, = (s%,y;) and ' = (s’ z;), with s'. € Oy,
sL€O0_andy;, z €D (1<i<n, 1<j<m), if N\_jri —p i, rl, then
there exists an v’ (1 < j < m) such that N}, rl —p (D, 04,0_) is weakly
convex when the implication holds for n = 1.

For example the NDR (Z,{<,>},{=}) is weakly convex but not strongly
convex. It is weakly convex since the implications ((<,y) —z Vj_,(=,2;))
and ((>,y) —z \/T:l(:,zj)) never hold. However, it is not strongly convex:
it is (>,2) A (<,5) —z (=,3) V (=,4), but also (>,2) A (<,5) =z (=,3) and
(>a2) A (<a5) L (:74)'

Lemma 1. (D,04,0_) is safe iff it is weakly convez.

Proof. We assume that (D,04,0_) is not weakly convex and we prove that it

is non-safe. Since it is not weakly convex we have that for some ry —p \/;.”:1 .
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there exists no r/ such that 7, —p 7/ . We define (Sy,S_), with S} = {ry}
and S_ = {r’}72, and we prove that (S,S_) is not satisfiable. (Sy,S_) is

J

indeed a constraint because r1 -»p L (otherwise ry —p r’ is true for every

J

J

r’ ) and for every v/, ry »p r’ (otherwise ry —p 7’ is true for at least one

7). Additionally, it is not satisfiable, because from ry —p \/;n:1 7 there can

be found no z such that r; (z) and /\;n:1 -l ().

We prove that if (D,04,0_) is not safe, then it is not weakly convex.
Since it is not safe then there exists a non-satisfiable constraint (S5, S_), where
Sy ={ri i, and S_ = {r’}72,. We have S,,S_ # () because otherwise a
solution for (S4,S_) exists. Since (S4,S_) is not satisfiable there exists no
x for 1 < i < n such that 7! (x) and /\;"=1 r? (x), or otherwise written,
ri —p V7., r’. From this and r{. -»p r_ (from the constraint definition),
(D,04,0_) is not weakly convex. O

Theorem 1 (Completeness). Let (D,04,0_) be a safe NDR, let O be an
5£J‘(D,O+,O,)-ontology containing azioms in normal form and let O’ be the
saturation of O under the rules of Table 2. For every A, B € (N/ N sig(O)), if
OEACB,then ACBeO orAC 1 €.

Proof. The proof is analogous to the completeness proof for the E£7" language
[3]; we build a canonical model Z for O using O’ and show that if AZ B e O
and AZ 1L €O thenZ¥ AC B.

For every A € N¢, F € N, define S; (A, F) and S_(A4, F), as follows:

S+(A7F> :{T+|AEEF.T+€O/,AEL¢O/} (3)
S_(AF) ={r_|3Fr_CBecO,ACB¢0)} (4)

We now show that (5S4 (A4, F),S_(A, F)) is a constraint over (D,O,,0_). First
we prove that ry —-»p L1, Vry € S; (A, F), which is true because otherwise
due to rule b1 it would be A C L € (', in contradiction to the definition
of S+ (A, F). Additionally, there is no ry € S4 (A, F) and r_ € S_(A, F) such
that r, —p r_, otherwise from A C IF.r, € O, 3Fr_ C B € O and cp2
it would be AC B € O which contradicts the definition of S_(A, F). Since
(S+(A,F),S_(A, F)) is a constraint over (D,0,,0_) and (D,04,0_) is safe,
there exists a solution V(A4, F) C D of (S (A, F),S_(A, F)). We now construct
the canonical model Z:

AT = {aa| Ac (NE Nsig(0)),AC L ¢ 0} (5)
BY ={zs|zac AT, AC Bc O} (6)
RT ={(za,2B) | AC3R.B€ O xa,25 € AT} (7)
FT = {(za,) | v € V(A F)} (®)

We prove that Z = O by showing that Z | «, when « takes one of the NF1-NF6.

NF1 A C B: We need to prove AZ C BZ. Take an z € AZ. By (6), 2 = x¢
such that C E A € O'. From A C B € O and since ' is closed under cri, we
have C C B € O'. Hence = = z¢ € B by (6).
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If B = 1, then we need to show that A7 = (). If there exists z € A7,
then by (6) © = z¢ such that C C A € O'. Since O’ is closed under cr1 and
AC 1L €0, wehave CC L € O'. Thus, x = ¢ ¢ A% by (5), which contradicts
our assumption that x € AT,

We examine separately the case when A = T. We have that x4 € A and
we need to show that x4 € BZ. From rule IR2, we have that AT T € . From
rule cR1, AC B € O; since x4 € AT and AC B € O we get 24 € B by (6).

NF2 A; 1 As C B: We prove (A |_|A2)I C BZ. Take an = € (A; N Ay)%;
then, 2 € A, x € AZ and by (6) = 24 for some concept name A such that
AC A € O and AC Ay € O. Since AC A € O, AC Ay € O and
A1 Ay € B € O, closure under rule cr2 gives AC B € O or x € B, by (6).

NF3 A C 3R.B: We show AT C (3R.B)%; take an = € AT. By (6), = = 2¢
where C C A € O'. Since A C 3R.B € O and @’ is closed under cr3, we have
C C3R.B € O'. Since z¢c € AT, we have C C L ¢ O and, hence, BC | ¢ O’
by crs. Thus, 25 € AT and (z¢,zp) € RT by (7). Since BC B € O’ by Ir1, we
have x5 € BZ by (6). Thus, z = ¢ € (3R.B)~.

NF4 JR.B C A: We prove (3R.B)? C AZ; take an = € (3R.B)%. Then, there
exists y € A’ such that (z,y) € RT and y € BZ. By (7) and (6) 2 = z¢
and y = zp such that C € 3R.D € O’ and D C B € O’ respectively. Since
JR.BC A€ O and O is closed under cra, C C A € O'. By (6), z = z¢ € AL.

NF5 A C 3F.r.: We show that AZ C (3F.r;)%; take an = € AL. By (6),
there exists a concept name C such that x = ¢ and C C A € O'. Since
AC3Fr, € O and @ is closed under cp1, we have C C 3F.r, € O'. We use
(3) and (4) to build (S+(C, F),S_(C,F)); we have ry € S, (C,F). By (8) we
have (z¢,v) € FT for every v € V(C,F). Since ry € S, (C,F), there exists
v € V(C, F) such that v satisfies 7, and, hence, x = x¢ € (3F.r;)Z.

NF6 3F.r_ C B: We prove that (3F.r_)T C BZ; take an x € (3F.r_)%. By
(5), there exists C' € (N Nsig(O)) such that x = z¢. By (3) and (4) we construct
(S+(C,F),S_(C,F)). Since zc € (3F.r_)%, by (8), there exists v € V(C, F),
such that r_(v) and V(C,F) is a solution for (S, (C,F),S_(C,F)). Hence,
r_¢S_(C,F),and so, CC B€ O by (4). By CC B € O and (6), zc € BZ.

We now show that if AC B¢ O and AC 1L ¢ O, then OF ALC B by
proving T ¥ A C B (since Z = 0). AT ¢ B? holds, because x4 € AZ (from
AC L ¢ 0O and (5)), 74 € AT (from A C A € O’ using rule IR1 and by (6)) and
x4 ¢ BT (from AC B ¢ O and (6)). O

4 Maximal Safe NDRs for N, Z, R and Q

In this section we present a full classification of safe NDRs for natural numbers
(0 € N), integers, reals and rationals. Table 3 lists all maximal safe NDRs for N,
Z, R and Q. Due to space constraints we present proofs only for the maximal
NDRs of natural numbers, that is NDR;, NDRy, NDRg and NDR;q. For these we
show that: (i) they are safe (ii) extending any of them leads to non-safety and (iii)
every safe NDR w.r.t. N is contained in one of the NDR;, NDR;, NDRg or NDRyj.
Table 4 presents some basic transformations between (satisfiable) constraints.
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Table 3. Maximal safe NDRs for N, Z, R and Q where D is the domain and O4+ ,0_
is the set of positive and, respectively, negative relations

NDR | D | o | 0 |
NDR; N, Z, R, Q {=} {<,<,>,>,=}
NDR» N, Z {>,>,=} {<,<,=}
NDR3 {<7§7: {>727:}
NDR, R, Q {<,>,>,=} {<,<,=}
NDRs R, Q {<,<,>,=} {>,>,=}
NDR6 {<7 7>>Z>:} {:}
NDR7 Rv Q {<7<7>727:} {S:Z}
NDRsg R, Q {<,<$,>,2,=} {z,=}
NDRg N, Z, R, Q {<,<,>,>,=} {<, <}
NDR19 N, Z, R, Q {<,<,>,>,=} {>,>}

Table 4. Transformations C1 = C preserving constraints and their satisfiability for
N, where S_, S; and S are sets of datatype restrictions and y1 < y2, 21 < 22

5T 5 5T 5
{(<9)} {y-1} {(<,2)} {(£,2-1)}
{9} {>y+1)} {(>,2)} {2+ 1)}

{(€91), (S, 92)} {(u)} {(£,21), (£, 22)} {(<,22)}
{(Z91), (=, 92)} {(=,y2)} {(z,21), (=, 22)} {(=,21)}
(=), (S92)} {(=v1)} {(=21), (£, 22)} {(<,22)}
{(2791)7(:792)} {(:72/2)} {(2721)7(:722)} {(2721)}
{(<.0)} 0

Lemma 2. Let Cy; and Cy be as defined in Table 4 and (N,04,0_) be an
NDR. Then (i) C1 is a constraint over (N,O4,O_) iff C2 is a constraint over
(N,O4,0_) and (ii) if C1 and Cy are both constraints over (N,O4,0_), then
C1 is satisfiable iff Cy is satisfiable.

Corollary 1. For N, let NDR; with i = 1,2,9,10. For every Cy = (S1,S%)

over NDR; there exists a constraint Co = (S2,52) over NDR;, y1,...,y, €N
and z1,...,2m € N with m, n > 0 such that:

Si g {(S»yl)a(:7y2)»'~~;(:ayn71)a(27yn)}
Sz - {(szl)v(zsz)v'"’(:’Zm—l)v(zvzm)}

where 21 < Y1 < ... < Yp < Zm, 21 < oo < Zm, Ui F 2 2 <1< n-—1,
2<j<m-—1) and Cy over NDR; is satisfiable iff Co over NDR; is satisfiable.

Lemma 3. NDR;, NDR;y, NDRg and NDRyg (all for N) are safe.

Proof. We prove safety by building a solution V' for every (Sy,S_) over the
NDRs; by Corollary 1 we can assume w.l.o.g. the following restrictions:
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NDR;: For S; we have that Sy C {(=,y1),...,(=,yn)} and for S_ that
S_C{(<,z1),(=,22)y -, (=, 2me1), (2, 2m) } Wlth 21 <Y1 < oo < Yn < Zim,
21 < ... < Zm andyl#zj (1<i<n 2<j<m—1). V={yi,-.-,yn}

NDR2 For S we have that S C {(=,v1),...,(=,Yn-1), (>,¥n)} and for S_
that S_ C {(<,21),(=,22), ..o, (S zm) F with 21 <y1 < .o0 < ypy 21 < ... < 2y
and y; # 2z, 1 < i < n-— 1, 2<j<m).V =A{y,...,Yn—1,Y,}, where
yr, = max(yn, zm) + 1.

NDRy: For S+ we have that S+ c {(Sayl)’ (:ay2)7 ceey (:7yn—1)7 (Zvyn)}
and for S_ that S_ C{(<,z)} with z1 <y1 < ... <yn. V={y1,.- ., Yn}-

NDRjg: For S} we have that S. C {(<,vy1),(=,92),--» (= Un-1), (Z,9n)}
and for S_ that S_ C{(>,z1)} with sy < ... <yn <z1. V={y1,...,yn}. O

Lemma 4. Let NDR = (N,0,,0_). If (a), (b) or (c), then NDR is non-safe.

(@) Oy N{<,<,>,2} #0, 0-N{<, <} #0 and O_ N {>,>} # 0.
(b) OxN{>>}#0,0_-N{>>}#0 and {=} CO_.
() Oy N{<, <} #0 and {=} CO_.

Proof. For every of the cases (a)-(c) we provide a counterexample that violates
the weak convexity condition and, thus by Lemma 1, safety:

(a): (<,3) =n (<, 1)V (>,1) but (<,3) -y (<,1) and (<,3) »n (>,1). The
same counterexample applies when Oy N{<, <} # 0, {<,>} € O_ and when
O N{<,<} # 0, {<,>} CO_. For Oy n{<,<} # 0, {<,>} C O_ it is
(<,3) —=n (<,2) V (>,1) but (<,3) »n (<,2) and (<,3) »y (>,1). A similar
example can be given for the the cases when O, N {>,>} # 0.

(0): (>,1) —=n (=,2) V (2,3) but (>,1) »y (=,2) and (>,1) »y (=,3)
(>71) —N (:72) \ (>72) but (>71) N (:72) and (>v 1) N (>72)
(2, 1) —N (:, 1) \Y (272) but (2, 1) AN (:, 1) and (2, 1) AN (2,2)
(>,1) —=n (=,1) V (>,1) but (>,1) »n (=,1) and (>,1) »n (>, 1)
(0): (<,3) = (= 1)V (=,2) but (<,3) - (= 1) and (<, 3) - (= 2)
(<2) = (= 1)V (=2) but (£,2) s (= 1) and (<.2) »y (=2) D

Lemma 5. NDRy, NDR;, NDRg and NDRyg (all for N) are mazimal safe, that
is if any relation is added to Oy or O_ they become non-safe.

Proof. We examine all cases of adding a new relation:

NDR;: If any of the <, <, >, > is added to O, then NDR; becomes non-safe
due to Lemma 4(a).

NDR,: If > or > is added to O_, then non-safety is due to Lemma 4(b). For
adding < or < to O, non-safety is due to Lemma 4(c).

NDRg: If > or > is added to O_, then non-safety is due to Lemma 4(a). When
= is added to O_ then NDRg becomes non-safe due to Lemma 4(c).

NDRjg: If < or < is added to O_, then non-safety is due to Lemma 4(a). When
= is added to O_ then NDRjy becomes non-safe due to Lemma 4(c). O

It remains to demonstrate that every safe NDR for N is contained in one of the
NDR;, NDRy, NDRg or NDR1g. In the following, we assume that Oﬂr and O are
defined such that NDR; = (N, 0% ,0%) with i = 1,2,9,10.
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Lemma 6. If (N,O,,0_) is a safe NDR, then Oy C O, and O_ C O. for
1=1,2,9 or 10.

Proof. The proof is by case analysis of possible relations in O; and O_.

Case 1: Oy N{<,<,>,>} = 0. In this case, O C O}r and O_ C OL.

Case 2: O, N{<, <, >, >} #0. I O_N{<, <} #0and O_N{>,>} # 0 at the
same time, then from Lemma 4(a), the NDR is non-safe. Therefore, we examine
two cases: either O_ C {>,>,=} or O_ C {<,<,=}.

Case 2.1: O_ C {>,>,=}. We distinguish either O_ C {>,>} or {=} C O_.
Case 2.1.1: O_ C {>,>} =0 and O, C O}ro.

Case 2.1.2: {=} C O_. By Lemma 4(c) it should be Oy C {>,>,=} = 0%
otherwise the NDR is non-safe. If O_ N {>, >} # 0 then the NDR is non-safe by
Lemma 4(b); otherwise O_ = {=} C O%.

Case 2.2: O_ C {<,<,=} =02.If O4 C {>,>,=}, then O; C OF. Otherwise,
O+ N{<, <} # 0 and we distinguish whether O_ C {<,<} or {=} € O_.

Case 2.2.1: O_ C {<,<}=0? and O, C 03.

Case 2.2.2: {=} € O_. In this case, the NDR is non-safe by Lemma 4(c). O

For the cases of integers, reals and rationals the proofs are analogous to the
case of natural numbers. The interested reader can find details in the technical
report [7]. In the following, we provide a brief explanation for the results. We
notice two new maximal safe NDRs w.r.t. Z, namely NDR3 and NDRg. The reason
is that integers do not have a minimal element such as 0 in the case of naturals.
In particular positive occurrences of < (or <) and negative occurrence of = are
no longer dangerous (e.g. (<,1) -»z (=,1) V (=,0) does not hold anymore).
Reals and rationals are examples of dense domains: between every two different
numbers there always exists a third one. This property is responsible for new
safe NDRs. Specifically, O, of NDR, and NDR3 can be extended with < and >
respectively because the weak convexity property which did not apply for Z now
applies for R (e.g. (<,5) »r (=,4) V (<, 3)). For the same reason, either < or
> can be added to O_ of NDRg (e.g. (<,5) »r (=,5) V (<, 4)).

5 Related Work and Conclusions

Datatypes have been extensively studied in the context of DLs [3, 6, 8]. Exten-
sions of expressive DLs with datatypes have been examined in depth [6] with
the main focus on decidability. Baader, Brandt and Lutz [3] formulated tractable
extensions of £L with datatypes using a p-admissibility restriction for datatypes.
A datatype D is p-admissible if (i) satisfiability and implication of conjunctions
of datatype restrictions can be decided in polynomial time, and (ii) D is convex:
if a conjunction of datatype restrictions implies a disjunction of datatype restric-
tions then it also implies one of its disjuncts [3]. In our case instead of condition
(i) we require that implication and satisfiability of just datatype restrictions (not
conjunctions) is decidable in polynomial time since we do not consider functional
features. Condition (ii) is relaxed to the requirement of safety for NDRs since
we take into account not only the domain of the datatypes and the types of
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restrictions but also the polarity of their occurrences. The relaxed restrictions
allow for more expressive usage of datatypes in tractable languages, as demon-
strated by the example given in the introduction. Furthermore, Baader, Brandt
and Lutz did not provide a classification of datatypes that are p-admissible; in
our case we provide such a classification for natural numbers, integers, rationals
and reals. The EL Profile of OWL 2 [2] is inspired by ££7 and restricts all
OWL 2 datatypes to satisfy p-admissibility in such a way that only equality can
be used. Our result can allow for a significant extension of datatypes in the OWL
2 EL Profile, where in addition inequalities can be used negatively.

Our work is not the only one where the convexity property is relaxed without
losing tractability. It has been shown [8] that the convexity requirement is not
necessary provided that (i) the ontology contains only concept definitions of the
form A = C, where A is a concept name, and (ii) every concept name occurs
at most once in the left-hand side of the definition. In some applications this
requirement can be too restrictive since it disallows the usage of general concept
inclusion axioms (GCIs), such as the axiom (2) given in the introduction, which
do not cause any problem in our case.

In this work we made a fine-grained analysis of extensions of ££ with nu-
merical datatypes, focusing not only on the types of relations but also on the
polarities of their occurrences in axioms. We made a full classification of cases
where these restrictions result in a tractable extension for natural numbers, in-
tegers, rationals and reals. One practically relevant case for these datatypes is
when positive occurrences of datatype expressions can only use equality and
negative occurrences can use any of the numerical relations considered. This
case was motivated by an example of a pharmacy-related ontology and can be
proposed as a candidate for a future extension of the OWL 2 EL Profile. For
the cases where the extension is tractable, we provided a polynomial sound and
complete consequence-based reasoning procedure, which can be seen as an ex-
tension of the completion-based procedure for ££. We think that the procedure
can be straightforwardly extended to accommodate other constructors in E£7F
such as (complex) role inclusions, nominals, domain and range restrictions and
assertions since these constructors do not interact with datatypes [9]. We hope
to investigate these extensions in future works.

In future work we also plan to consider other OWL datatypes, such as strings,
binary data or date and time, functional features, and to try to extend the
consequence-based procedure for Horn SHZQ [10] with our rules for datatypes.
For example, to extend the procedure with functional features, we probably need
a notion of “functional safety” for an NDR that corresponds to the strong con-
vexity property (see Definition 4). In order to achieve even higher expressivity for
datatypes we shall study how to combine different restrictions on the datatypes
occurring in an ontology so that tractability is preserved. For example, using
two safe NDRs in a single ontology may result in intractability, as is the case for
NDR; and NDRg for integers (see Table 3). One possible solution to this problem
is to specify explicitly which features can be used with which NDRs in order to
separate their usage in ontologies.
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1 Introduction

The use of a conceptual model or an ontology to wrap and describe relational
data sources has been shown to be very effective in several frameworks involving
management and access of data, such as information integration through medi-
ated schemata [1], and the Semantic Web [2]. Ontologies provide a conceptual
view of the application domain, which is closer to the user perspective, and au-
tomated reasoning can be leveraged to support exploration and querying of the
underlying data sources.

In this paper we focus on the problem of designing ontologies which describe
relational data sources, and whose purpose is to provide a semantically enriched
access to the underlying data. We use the term data wrapping ontologies to
distinguish these ontologies from domain ontologies; whose purpose is to model
a domain.

In order to maximise the benefits of using data wrapping ontologies, these
should be rich enough to ease their integration with the domain ontology and, at
the same time, precisely characterise the data they wrap. Ontologies extracted
automatically from data sources (e.g. by analysing the constraints in the logical
schema) are faithful representations of the data sources; however, they are usu-
ally shallow and with a limited vocabulary. For this reason, they can be used as
bootstrap ontologies, and the task of enriching the extracted ontology is crucial
in order to build a truly effective ontology-based information access system. The
process of enriching an ontology involves at least the introduction of new axioms
and/or new terms. While, from a purely ontological viewpoint, an ontology can
be arbitrarily modified, we need to bear in mind that the ultimate purpose of
the data wrapper is to access the information available from the data sources.
This means that newly introduced terms (concepts or roles) should be “backed”
by data in the sources; i.e. queries over these terms should be rewritable w.r.t.
data sources.

It is easy to provide examples where newly introduced terms will always
return empty answers, regardless the actual data contained in the sources (see
Section 3). This not necessarily because they are unsatisfiable in the usual model

* This paper is an excerpt from the ASWC 2009 paper “Supporting the Development

of Data Wrapping Ontologies” by the same authors. The work presented in this
paper has been partially funded by the European project ONTORULE.
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theoretic meaning, but because there is no way of mapping them into the data
sources.

In order to ensure that queries over ontologies wrapping data sources provide
sensible answers, these ontologies must be carefully handcrafted by taking into
account the query answering algorithm. To the best of our knowledge, little or
no research has been devoted to the support of the ontology engineer in such a
complex and error prone task. Our research is directed to techniques and tools
to support this modelling process.

In [3] we introduced the problem and presented some preliminary results. The
contribution of this paper is a generalisation of the these results, by providing
algorithms to verify term emptiness for a more expressive class of ontology lan-
guages (see [4]). In particular, a crucial gain in terms of expressive power of the
language adopted in this work is the ability to express inclusions among roles.
Moreover we provide a technique to support the user in the “repair” of the empty
terms and we present empirical study showing the benefits of our approach.

2 Preliminaries

To formalize ontologies, we use the DL ELHZ [4]. For P an atomic role, an
ELHT basic role has the form P or P~. For A an atomic concept, an ELHT
basic concept has the form A,3JR,3R.A or By M By, where R is a basic role. An
ELHT ontology is formalized in terms of a TBoz, which is a set of inclusion
assertions of the form By C By or Ry T Ry, with By, By basic concepts and
R1, Rs basic roles. The actual data instances are instead stored in an A Bozx, that
consists of a set of membership assertions of the form A(a) or R(a,b), with A an
atomic concept, P an atomic role, and a, b constants'. An ELHT knowledge base
(KB) K is a tuple (7, .A), where 7 is a TBox and A is an ABox. We assume the
“standard” DL semantics, with the unique name assumption.

A datalog rule is an expression of the form a(x) < body(x,y), where a(x) is
the head atom and body(x, y) is a set of body atoms. A datalog program II is a set
of datalog rules. The extensional database (EDB) predicates of IT are those that
do not occur in the head atom of any rule in IT; all other predicates are called
intentional database (IDB) predicates. A datalog query @ over an ELHTI KB K
is a tuple (@7, IT), where Q7 is a query predicate and IT is a datalog program
whose predicates (except Q) are concept and role names occurring in K. @Q is
a conjunctive query (CQ) if IT contains exactly one rule with Qp as its head
predicate not occurring in the body. A tuple of constants a is a certain answer
to a datalog query @ over K iff XU Il E Qp(a), where IT is considered to be
a set of universally quantified implications with the usual first-order semantics.
We use cert(Q, K) to denote the set of all certain answers to @ over K.

1 As a matter of fact, an ABox is considered only wirtually, while the actual data is
stored in a relational DBMS and wrapped by means of an ontology; see [5].
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3 Emptiness of Ontology Terms

The foundation of our technique is the problem of verifying the emptiness of
a given term w.r.t. a set of data source terms (i.e. terms “connected” to data
sources). Given a Description Logic (DL) theory composed by TBox and ABox
over a given vocabulary, we define a subset of the concepts and roles as data
source terms. Given a TBox, a concept or role term is empty iff the certain answer
of the query defined by the term is empty for all possible ABoxes whose assertions
are restricted to data source terms. The idea is that data (by means of ABox
assertions) can only be associated to data source terms. Clearly the problem is
different from classical (un)satisfiability, because we impose a restriction on the
kind of allowed ABox assertions. Note that the two problems coincide when all
the DL terms are considered as data sources.

To provide an intuition of the reasoning task let us consider a simple exam-
ple depicted in Figure 1, where the bottom part represents the logical schema,
the middle part the data source terms (connected with the relational sources by
means of mappings, depicted with dashed arrows) and the top part the enriched
fragment of the ontology. It is obvious that any query on Actor would always
return empty answer, whatever the data sources may contain; while the concept
represented by the same term would be satisfiable. The situation would be dif-
ferent if Actor was also restricted to elements whose range w.r.t. person_role was
bound to ActingRole?. In this case, there could be instances of the database for
which the same query on Actor would return a nonempty answer.

TVListing

3
S = T T —-
g 3
5 © Role || Movie I
B g T : ’
< © ' ] 1= ]
o o ! ' H !
gl 9 \ / i ActingRol 4
gl 8 ] /: | ctingRole :’l
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L \J 14 v o 4

° T name cast_info role_type title

gg id | name person_id |role_id id | name id | title | year
3

<

A ] [ /)

Fig. 1. Example of a simple data wrapper

Let XYpp denote the subset of terms occurring in 7 as “coming” from the
data sources, i.e. data source terms. Given such X'pg, a Xpg-ABox is an ABox
defined over YXpp only. Given a term n in 7, we call a query for n a CQ of the
form Q(x) <« n(x) (resp., Q(x,y) «— n(x,y)), for n an atomic concept (resp., an
atomic role) in 7. Our goal is to test whether 7 is empty w.r.t. the data at the

2 In DL terms this corresponds to an inclusion assertion Jperson_role.ActingRole T
Actor.
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sources, i.e., w.r.t. Xpg. Clearly, such a test should involve the query answering
process. That is, to verify emptiness of 7, we have to check whether a query for
7 is empty given a TBox and a Y'pg-ABox.

Definition 1. Let 7 be an ELHI TBox and n a term in T with query Q for n.
Then, 1 is empty w.r.t. Xpg iff cert(Q, (7T, A)) = 0 for every Xpg-ABoz A.

This defines the problem studied in this paper: given a term 7 in 7 with a CQ
Q for 0, test whether cert(Q, (7, A)) = () for every A whose assertions are over
Yppr only. Note however that this does not imply that we will be necessarily
computing cert(Q, (T, .A)).

It is well known that the problem of computing certain answers in the pres-
ence of an incomplete database is often solved via query rewriting under con-
straints. Specifically, from [6] we have that given a conjunctive query @) over an
ELHTI KB K = (T, A), we can compute another query @', a rewriting of @,
such that the certain answers of Q over K and the answers of Q' over A only
coincide, i.e., cert(Q, (7T, A)) = cert(Q’, A). Thus, we have the following:

Lemma 1. Let T be an ELHI TBox and n a term in T with query @ for 7.
Let Q" be a rewriting of Q. Then, 1 is empty w.r.t. Xpp iff cert(Q’', A) =0 for
every Xpp-ABox A.

The above lemma shows that the problem of testing emptiness of a given term
amounts to verifying whether the rewriting of its query returns empty answer
for every possible Ypp-ABox. We will see later that for this purpose we will
not need to compute the actual evaluation, however, we will employ the above
relationship as described in the sequel.

4 Testing Emptiness

The rewriting of a CQ over ELHZT KB is a datalog query [6]. Therefore, according
to Lemma 1, our problem now comes down to testing emptiness of a query
predicate in the rewritten datalog program. The problem of verifying emptiness
of datalog predicates has been addressed by Vardi [7], showing that deciding
emptiness of IDB predicates can be done in polynomial time. The key idea
underlying this result is the observation that a datalog program can be viewed
as an infinite union of CQs that, in turn, can be described by means of expansion
trees. Importantly, [7] shows that we can get rid of variables when building
expansion trees, obtaining skeletons of expansion trees. Then, an IDB predicate
is empty in a datalog program, iff there is no skeleton tree for that predicate
having as leaves EDB predicates only. We build our approach on the results
of [7], and in particular on the possibility of building finitely labelled trees for
IDB predicates.

For a term n with a CQ @ for n in an ELHZ TBox 7, we devise our emptiness
testing algorithm in four steps: (i) rewrite @) using procedure of [6], obtaining
a datalog query Q' = (Qp, II), (i) add to IT auxiliary rules for making IDB
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and EDB predicates explicit, (i) for the resulting Datalog program with a
query predicate @7, build an AND-OR skeleton tree for @7, and (i) traverse
the obtained tree by marking its nodes as empty/nonempty corresponding to
empty /nonempty predicates, and, in turn, to empty/nonempty concepts and
roles in 7. In the following we will elaborate on steps (ii)-(iv); for details on the
rewriting algorithm we refer to [6].

Given a datalog program II with a query predicate Q7 resulting from rewrit-
ing a CQ for a given term over 7, let IT* denote a datalog program obtained by
adding to IT rules of the form:

— A(z) « A(z), P(z,y) — P(z,y), for every predicate symbol A, P € IT
corresponding to an atomic concept and role in 7, respectively, such that
A, P ¢ Ypg and A, P do not occur among the head atoms of any rule in IT;

— A(z) « Aw(x), P(x,y) < Pg(z,y) for every predicate symbol A, P € IT
such that A, P € YXpg.

Note that an auxiliary rule A(z) «— A(x) is equivalent to a tautology A(z) V
—A(x); thus, from a logical point of view, we do not change the semantics of IT.

The following definition describes the AND-OR skeleton tree that is associ-
ated to a datalog program (we assume all rules in IT* are named).

Definition 2. Given a datalog program II* and an IDB predicate Qp in IT*,
the associated AND-OR skeleton tree for Q7 in IT*, denoted tree(Qp, IT*), is a
labelled tree consisting of alternating levels of and-nodes and or-nodes such that

— the root of tree(Qr, II*) is a (and-)node labelled by Q,

— for every and-node labelled by a predicate R in tree(Q, IT*) and for every
rule v of II* having R as its head predicate, there exists a child or-node of
R labelled by r,

— for every or-node labelled by a rule r in IT*, tree(Q, II*) has an and-node
child for every atom g in the body of r, and the label of each such and-node
is the predicate symbol of g.

An and-node labelled by R in tree(Qm, I[T*) is a leaf, if either (i) it is labelled
with an EDB predicate, (ii) there are no rules in II* having R predicate in the
head, or (iii) there is some other and-node in tree(Qm, IT*) labelled by R that
has already been expanded; we refer to such node as the expanded equivalent of
R, denoted eq(R).

An or-subtree T in tree(Q 7, IT*) is a subtree of tree(Qr, IT*) such that (1) for
an and-node R € 7, T contains one of the child or-nodes of R in tree(Qp, II*),
(ii) for an or-node r € T, T contains all children of r in tree(Q, IT*).

Ezxample 1. Consider the data wrapping ontology from Figure 1. We list below
the relevant axioms:

Movie C TVListing  dJactsIn.Actor C Movie  Actor C Person
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Fig. 2. Skeleton tree corresponding to the Datalog program of Example 1.

As can be seen from the figure, Movie and Person are linked to the data sources,
i.e. they are data source terms. Suppose we want to test emptiness of TVListing
term in the above ontology. The (partial) datalog program resulting from rewrit-
ing the query ¢(x) < TVListing(x) is given below, together with auxiliary rules
rg through r17 to make actsln and Actor IDB predicates, and Person and Movie
EDB predicates.

r1 : q(z) < TVListing(x) r7 : TVLising(x) < actsIn(y, =), Actor(y)
ro : TVListing(x) < Movie(x) rg : Movie(z) < Movieg ()

r3 : Movie(x) « actsln(y, ), Actor(y) 79 : Person(z) < Persong(z)

ry4 : Person(x) < Actor(z) r10 : actsln(z, y) < actsIn(x, y)

r5 : q(x) < Movie(x) r11 : Actor(z) « Actor(x)

re : q(x) <« actsIn(y, x), Actor(y)

The AND-OR skeleton tree for this datalog program is shown in Figure 2. Note
that the children and-nodes of r1g, r11, 77, 5 and rg are not further expanded,
since they have isomorphic nodes that have already been expanded. The tree has
5 distinct or-subtrees, one of them e.g. formed from the path of or-nodes 1,72
and rg.

It is easy to show that each or-subtree of a given AND-OR skeleton tree
corresponds to a skeleton of expansion tree defined in [7]. Therefore, a query
predicate Q7 is empty, iff all or-subtrees of tree(Q 7, II*) are empty.

Definition 3. Given an AND-OR skeleton tree tree(Qp, II*) for Qm in IT*, an
and-node R is empty in tree(Q, IT*) if either (i) there is the expanded equiva-
lent of R, eq(R), that is empty in tree(Qr, II*); (ii) R is a leaf in tree(Q, IT*),
it is not an EDB predicate, and there is no eq(R) in tree(Q, II*); (iii) all chil-
dren or-nodes of R are empty. An or-node r is empty in tree(Q 7, IT*) if at least
one child and-node of v is empty.

The above definition provides the basis for a procedure for traversing a given
AND-OR skeleton tree. While emptiness of ;7 node can be decided by inspect-
ing leaf nodes only, our algorithm traverses all the tree; this information will
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be the main input for suggesting the “repairs” of empty terms, as described in
Section 5. We illustrate this process with the following example.

Ezample 2 (Example 1 continued). We start with actsIn leaf, child of 719, and
mark it as empty (it is not an EDB predicate). This makes also its parent 1 and,
in turn, actsln and r3 empty. To decide for Movie, we have to know emptiness of
rg. Movieg, is an EDB predicate, so it is nonempty. Consequently, we mark rg and
Movie as nonempty, which determines non-emptiness for ro and then TVListing,
r1 and finally q. Actor leaf, child of 717, is empty as well. Consequently, children
of r7 and rg are empty. In contrary, Movie, child of r5 is marked as nonempty,
because its expanded equivalent, child of 79, is nonempty.

Indeed, we can construct a CQ g(x) < Movieg,(z) from the AND-OR skele-
ton tree that witnesses non-emptiness for TVListing.

According to [6] and due to the fact that the input query for a given term has
always single atom in its body, we have that the number of rules generated by
the rewriting algorithm is exponential w.r.t. 7. Given n distinct IDB predicates
in IT*, the size of the AND-OR tree generated from IT* is at most nm, where
m is the maximum number of atoms in the body of a rule in IT*. Thus, we have
the following.

Theorem 1. Let K = (T, A) be a ELHT KB, n a term in T and Xpp set of
data source terms. Emptiness of n w.r.t. Xpp can be decided in time exponential
in the size of T.

Note that the above result is optimal w.r.t. the complexity bounds from [8]:
deciding emptiness of a term in L7 there is shown to be EXPTIME-complete.

Finally, we stress the fact that, due to the rewriting algorithm [6], the tech-
nique presented in this section is applicable to ontology languages in the full
spectrum of DLs from ELHZ to DL-Litecore [9)-

5 Repairing Empty Terms

So far, we have devised a procedure for verifying whether a given term in a
data wrapping ontology is empty w.r.t. the database terms at the sources. We
now present a method for supporting the repair of empty concepts and roles,
consisting of a set of repairing axioms that can be seen as guidelines for ontology
engineers.

To suggest a repair for an empty term, we naturally resort to the datalog
program IT* and the skeleton tree generated from IT* by our emptiness testing
algorithm. Indeed, the skeleton tree for a term 7, by virtue of its construction,
contains as nodes all and only relevant terms for n: those that contribute or
could contribute to its non-emptiness. So an intuitive way to fix an empty term
is to focus on the relevant nodes of its corresponding skeleton tree and to pos-
sibly erpand those nodes by rendering them nonempty. The expansion should
obviously be in correspondence with an addition or refinement of a term or/and
assertion in the actual ontology.
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Given an or-subtree 7 in an AND-OR skeleton tree tree(Qpr, IT*) with all
nodes marked, let {2 = [wy,...,w,] denote the sequence of distinct sets of and-
nodes® in 7, such that, intuitively, each w; contains a set of and-nodes that are
empty in tree(Q, II*) and are grouped in a bottom-up fashion by their depth.
The next example illustrates this notion.

Ezample 3. Suppose rule rg was not present in the tree of Figure 4. Hence,
TVListing is no longer nonempty. {2 defined above for the or-subtree following
r9,73 ancestors of TVListing is the following sequence: [{actsIn, Actor}, {Movie},
{TVListing}]. The intuition here is that, in order for TVLisintg to become nonempty,
besides rendering TVListing itself nonempty, also Movie or both, actsln and Ac-
tor, if rendered nonempty, would make TVListing nonempty as well. Instead the
reason for a depth based ordering is that if both, actsIn and Actor were made
nonempty, then the remaining terms in the sequence Movie and TVListing would
become nonempty as well.

Thus, for each and-node R in w, we consider R as a leaf in the tree and examine
its possible expansions. In turn, to expand a leaf we need a new rule with its
corresponding atom in the head. Given such a rule, we can track down the needed
terms and assertions in the ontology and provide those repairs as guidelines to
the user. We exploit axioms in the ontology, rather than rules in the program,
because, by virtue of [6], not all axioms are in one-to-one correspondence with
rules in the computed rewriting.

For a node R corresponding to an atomic concept, say A, our repair service
provides the following guidelines. First, it suggests to add an inclusion asser-
tion with A on the right-hand side (line 6). This, from the modeling point of
view, results in either defining role typing constraints (or domain and range)
for a relationship defined by role P, if such is detected by means of manda-
tory participation constraints (and similarly if range restriction is given for P).
Second, if A C B is present in 7 and B is nonempty, the user is warned with
misplaced is-a relationship, i.e., possibly B C A should have been added instead
of A C B. Third, given A C B in 7 such that B has participation constraints
to a nonempty role P, the algorithm suggests to assert participation constraints
for A to P as well (and similarly if range restriction is known for P). Moreover,
given a range concept, say C' for P, if C' is specialized by some concept D in
the ontology, then the suggested axiom for A can also be specialized to D. Fi-
nally, the service suggests to assert A as a superclass of some concept B, and as
a participating class to some role P, provided both A and P are known to be
nonempty in 7. When 7 is small, such axioms could be included in the set of
repairing axioms for every nonempty concept and role in 7. Otherwise, the task
of selecting appropriate concepts and roles is left to the user.

If a given node R corresponds to a role, say P, the service generates axioms in
a similar fashion. First, as before, it warns for misplaced role inclusions, provided
such an axiom is present in 7. Then, if a root node being considered for repair

3 Two and-nodes are considered distinct if their labels are distinct.
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is a concept and not a role*, then for every nonempty atomic concept A in 7
acting as a domain or range of P, the service suggests to add an axiom stating
mandatory participation for A to the relationship defined by P (and the same for
more specific concepts, as above). Finally, it hints to add an inclusion assertion
between roles with P on the right-hand side, i.e. to make P more general than
some role S that is nonempty in 7.

Note that the set of repairing axioms may also be empty, if there are no
nonempty nodes in the tree that can be used for repair. In this case, we suggest
to explicitly map to the sources either the actual empty term or any of its relevant
terms.

Ezample 4 (Example 8 continued). Consider a data wrapping ontology from Fig-
ure 1 and suppose Movie is not mapped to the sources. To repair actsln the user
will be suggested to assert it as more general than person_role. This is obviously
not meaningful, so there is no repair for actsln. As for Actor, our repair service
suggests the following axioms:

Person C Actor Jperson _role.Role C Actor
Jperson_role C Actor  dperson_role.ActingRole C Actor

6 Evaluation

We have implemented services discussed in Sections 4 and 5 as a plug-in for
Protégé 3.3% (we are in the process of porting them to Protégé 4) and evaluated
their effectiveness with a usability study involving ten external users (see [5] for
details).

We used showbiz domain for the study. In particular, for the sources, we used
IMDB movie database, retrieved using IMDbPY®. The wrapping ontology, that
we call showbiz, was obtained by first automatically extracting the bootstrap
ontology from IMDB database together with mappings [10] (21 in total), and
then by manually enriching it with terms and assertions to (partly) describe TV
programmes. The obtained ontology contained 24 classes and 14 properties.

The subjects were randomly divided into two groups: five subjects without
the support for testing emptiness of ontology terms and repairing them (group
1), and five subjects with the support of the above described plug-in (group
2). Then, each subject was given four simple queries over showbiz ontology but
having empty answers: e.g. asking for all movies that have a genre, all TV list-
ings and their kinds, etc. Given that, the subjects were asked to add to the
ontology new assertions so that the given queries were no longer empty. This
involved identifying atoms responsible for query emptiness and repairing the
corresponding terms. The subjects in group 2 were additionally asked to fill in a
questionnaire concerning their experience using the tool. The goal of this study

4 While our procedure computes repairs for a contributive node, with a root node here
we mean the node that one actually aims to repair, as e.g. TVListing in Example 3.

® http://protege.stanford.edu

S http://imdbpy.sourceforge.net/
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was to compare the time taken and effort needed to complete the task between
the two groups, and to evaluate user experience in using the plug-in.

The results of the study are promising. While the assertions added to an
ontology in order to arrive to a solution were mostly correct and alike in both
groups, the time taken to do it in group 2 was between 2-3 times less than in
group 1. Specifically, the average time taken for group 1 was 39 minutes, and 20
minutes for group 2. The average number of changes made to the ontology in
order to repair given queries, which we consider to be as key sub-task, for group
1 was 11, and 6 for group 2. The total number of changes needed for all queries
was 5. This means that, in average, each subject in group 1 made 5 erroneous
changes to repair the given queries, while in group 2 — 1 erroneous change.

As mentioned, we have also collected user reactions to the tool. The ques-
tionnaire used for this purpose was composed of 10 short statements (e.g., “I
found repair guidelines to be adequate”), each accompanied by a 5-point scale of
“strongly disagree” (1 point) to “strongly agree” (5 points). Thus, given 5 subjects
in group 2, each statement scores to maximum of 25 points. The key aspects,
from the usability point of view, are that subjects in group 2 felt that they could
effectively identify the reason for query emptiness using the tool (rated a total
score of 19) and effectively repair empty terms using the tool (21 points), and
strongly agreed that they could identify empty classes/properties and fix them
using the tool faster than without it (25 points). Finally, the overall satisfaction
of using the plug-in scores to 25.

7 Conclusions

This paper presents a technique for supporting ontology engineers in the de-
velopment of ontologies for accessing relational data sources. We introduced the
notion of emptiness of a given term w.r.t. a DL theory where data can be accessed
only through a subset of the concepts and roles (analogously to the EDB/IDB
predicates distinction in datalog programs). We have presented an optimal prac-
tical algorithm for deciding emptiness of terms in £L£HZ ontologies. Moreover,
we have shown how the information generated by this algorithm can be exploited
in order to support the engineer in “repairing” the ontology. The algorithm pre-
sented can be applied in other scenarios, e.g. for optimizing the rewriting by
removing rules with empty predicates, or for guiding module extraction based
on nonempty terms only (see [8]).

Recently there has appeared a contribution [8], carried out independently,
that tackles a very similar problem but comes up in a different context. The
authors study the computational complexity for the problem of predicate (and
query) emptiness for a wide range of DLs. For the DLs ££ and DL-Lite, they
provide algorithms for verifying emptiness, taking a different approach from
ours. While our algorithm is via translation to emptiness of IDB predicates
in datalog, [8] instead uses reduction to standard ABox reasoning. Using their
simple technique, emptiness of a term in £L£ can be decided in PTIME. For ELZ,
testing emptiness is shown to be already EXPTIME-complete, by reduction to
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subsumption/instance checking, but no algorithm is provided for this problem.
As we mentioned, our practical algorithm is optimal w.r.t. the complexity bounds
established there.

Levy [12] defined, in the context of datalog optimization, so-called irrelevance
claims stating that a formula is irrelevant to a query w.r.t. a knowledge base
and proposed algorithms for deciding irrelevance. However, this notion is rather
different in nature from the emptiness problem we studied in this paper. In
particular, it is a premise of a proof which may or may not be relevant to the
deduction of a given formula. Therefore, those techniques cannot be directly
applied.

Finally, we refer to the work in [13] as related, where, for queries having
answers solely determined by the database predicates (the so-called DBox pred-
icates with closed semantics, as apposed to the ABox), the authors show how
to find a rewriting over such predicates. The restriction to determinacy may
be however in some cases too strong, as for instance TVListing in Figure 1 is
not determined by the database predicates but can be (in the classical setting)
rewritten to a database term.
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Abstract. We study the problem of updates for TBoxes represented in Descrip-
tion Logics of the DL-Lite family. DL-Lite is at the basis of OWL 2 QL, one of
the tractable fragments of OWL 2, the recently proposed revision of the Web On-
tology Language. In this paper, we address for the first time the problem of updat-
ing TBoxes. We propose some principles that TBox updates should respect. We
review known model- and formula-based approaches for updates of logical theo-
ries, and exhibit limitations of model-based approaches to handle TBox updates.
We propose a novel formula-based approach, and present a polynomial time al-
gorithm to compute TBox updates for DL-Lite r . We also study the relationship
between propositional logic satisfiability for Horn clauses and computation of
TBox updates for DL-Lite.

1 Introduction

Ontology languages, and hence Description Logics (DLs), provide excellent mecha-
nisms for representing structured knowledge, and as such they have traditionally been
used for modeling at the conceptual level the static and structural aspects of applica-
tion domains [1]. A family of DLs that has received great attention recently, due to its
tight connection with conceptual data models, such as the Entity-Relationship model
and UML class diagrams, is the DL-Lite family [2]. Such a family of DLs exhibits nice
computational properties, in particular when complexity is measured wrt the size of the
data stored in the ABox of a DL ontology [2, 3]. It is also at the basis of the tractable
profiles of OWL 2, the forthcoming edition of the W3C standard Web Ontology Lan-
guage.

The reasoning services that have been investigated for the currently used DLs and
implemented in state-of-the-art DL reasoners [4], traditionally focus on so-called stan-
dard reasoning, both at the TBox level (e.g., TBox satisfiability, concept satisfiability
and subsumption wrt a TBox), and at the ABox level (e.g., knowledge base satisfiabil-
ity, instance checking and retrieval, and more recently query answering) [5, 6]. Recently,
however, the scope of ontologies has broadened, and they are now considered to be not
only at the basis of the design and development of information systems, but also for
providing support in the maintenance and evolution phase of such systems. Moreover,
ontologies are considered to be the premium mechanism through which services oper-
ating in a Web context can be accessed, both by human users and by other services.

* The author is co-affiliated with INRIA Saclay, fle-de-France.
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Supporting all these activities, makes it necessary to equip DL systems with additional
kinds of inference tasks that go beyond the traditional ones, most notably that of ontol-
ogy evolution [7], where new knowledge is incorporated into an existing KB. Two main
types of ontology evolution have been considered, namely revision and update [8].

In revision, we assume that the new knowledge is certainly true in the real world.
Therefore, every model of a revised KB should satisfy this knowledge and should have
minimal distance to the old KB, where the notion of distance depends on the appli-
cation. An important feature of revision is that the distance is defined “globally” and
depends on all the models of the old KB. In [9, 10] revision of DL knowledge bases was
considered. In update, we assume that the new knowledge reflects a change in the real
world, and we update every model of the old KB with this new knowledge. Note that
update operators, in contrast to revsion operators, work “locally”. In our work we focus
on ontology update.

A request for an ontology update (or simply update request) represents the need
of changing an ontology so as to take into account changes that occur in the domain
of interest described by the ontology. In general, such a request is represented by a set
of formulas denoting those properties that should be true after the change. In the case
where the update request causes an undesirable interaction with the knowledge encoded
in the ontology, e.g., by causing the ontology or relevant parts of it to become unsat-
isfiable, the update request cannot simply be added to the ontology. Instead, suitable
changes need to be made in the ontology so as to avoid the undesirable interaction, e.g.,
by deleting parts of the ontology that conflict with the update request. Different choices
are possible in general, corresponding to different update semantics, which in turn give
rise to different update results [11]. Moreover, it is necessary to understand whether the
desired update result can be represented at all as a KB in the DL at hand.

Previous work on updates in the context of DL ontologies has addressed ABox
(or instance level) update [12, 13], where the update request consists of a set of ABox
assertions. In [12] the problem is studied for DLs of the DL-Lite family, while [13]
considers the case of expressive DLs. Both works show that it might be necessary to
extend the ontology language with additional features/constructs in order to guarantee
that the updated ontology can be represented.

Instead, the problem of TBox level update has not been considered before. In this
paper we take first steps at filling this gap. Specifically, for the case of DLs of the DL-
Lite family, we study the problem of updating a TBox with a set of TBox assertions.
We address first the issue of which semantics to adopt for TBox updates, and specify
some general principles that updates should respect. This leads us to argue that none
of the previously proposed semantics [14—17], neither model-based nor formula-based
is totally appropriate: either too many formulas need to be thrown out in the result of
the update, or such a result is not representable as a DL-Lite TBox. Hence, we propose
an alternative formula-based semantics, called Bold Semantics , and provide polyno-
mial time algorithms to compute it for various members of the DL-Lite family (we
restrict the attention to those DLs of the DL-Lite family that exhibit polynomial time
TBox reasoning, specifically we consider only the case where the interaction between
functionality assertions and role inclusions is restricted). The task at the core of our
algorithm is the problem of checking full satisfiability of a DL-Lite TBox, i.e., whether
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Fig. 1. DL-Lite hierarchy.

all atomic concepts and roles are (simultaneously) satisfiable. We provide a novel algo-
rithm for this problem that is based on a reduction to reasoning in propositional binary
Horn theories. This gives us also an alternative proof technique that is not based on the
Chase for tractability of TBox reasoning in DL-Lite.

2 Preliminaries

Description Logics (DLs) [18] are knowledge representation formalisms, tailored for
representing the domain of interest in terms of concepts and roles. In DLs, complex
concept and role expressions (or simply, concepts and roles) are obtained starting from
atomic concepts and roles (which are simply names) by applying suitable constructs.
Concepts and roles are then used in a DL knowledge base (KB) to model the domain
of interest. Specifically, a DL KB K = (7, .A) is formed by two distinct parts, a TBox
7T and an ABox A. The TBox 7 represents the intensional-level of the KB, that is, the
general knowledge. The ABox provides information on the instance-level of the KB. In
this paper we focus on a family of DLs called DL-Lite [2], that corresponds to one of
the tractable fragments of OWL 2, the recently proposed revision of the Web Ontology
Language.

The basic logic of the DL-Lite family is DL-Lite ..., which includes constructs that
are used in all others logics of the family. These constructs are the following:

B := A|3R, C = B| B, R:=P| P,

where A denotes an atomic concept, B a basic concept, and C a general concept. The
symbol P denotes an atomic role, and R a basic role.

A DL-Lite ... TBox is a set of concept inclusion assertions of the form: B C C,
and an ABox is a set of membership assertions of the form: A(a), P(a,b).

The two logics DL-Lite r and DL-Liter both extend DL-Lite .,,.. They have ABoxes
of the same form as DL-Lite ., but their TBoxes are different. A DL-Lite  TBox may
include functionality assertions for roles of the form (funct R). DL-Liter has role in-
clusion assertions of the form R; T Ry (instead of functionality assertions). There
are proposals that consider DL-Liter also with role disjointness assertions of the form
R; C —R,, but we do not take them into account in our paper. Both DL-Liter and
DL-Literz have nice computational properties, for example, knowledge base satisfia-
bility has polynomial-time complexity in the size of the TBox and logarithmic-space
complexity in the size of the ABox, so-called data complexity.
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DL-Literr is a hybrid of DL-Liter and DL-Liter. It allows for both functional
assertions and role inclusion assertions in its TBox. The use of functionality and role
inclusion assertions together may lead to an increase in the complexity of reasoning. A
way to avoid this is to introduce the following syntactic restriction: if R; T Ry appears
in a TBox, then (funct Ry) is not in the TBox. Hence, when talking about DL-Lite r
knowledge bases in this paper, we assume they satisfy the syntactic restriction above.

In Figure 1 we list the four logics of the DL-Lite family and show the relationships
between them in terms of expressiveness. If there is an arrow from a logic X to a logic
Y in the figure, it means that the logic Y is more expressive than X.

The semantics of a DL is given in terms of first order interpretations. Let A be
a fixed countably infinite set. All interpretations that we consider are over the same
domain A.

An interpretation T is a function - that assigns to each concept C' a subset C*
of A, and to each role R a binary relation RT over A in such a way that AT C A,
P C Ax A, (-B)f = A\ B%, and

(3R)* = {a | 3d’. (a,d’) € RI}, (R = {(ag,al) | (a1,a2) € RI}.

An interpretation Z is a model of an inclusion assertion D; T Dy if Dlz C D:QI . An
interpretation Z is a model of a functionality assertion (funct R) if R is a partial function
over A, thatis, Z |= VY, y1, yo. (Rz(az7 y1) A R (z, yg)) — Y1 = Yo.

Given an assertion F' and an interpretation Z, we denote by Z |= F the fact that Z is
a model of F'. A model Z is a model of a knowledge base (KB) K = (7, .A) (denoted
as 7 |= K) if Z is a model of each of the assertions of 7 U A. A KB is satisfiable if it
has at least one model. A KB K logically implies an assertion F', written KC |= F, if all
models of K are also models of F'. Similarly, a TBox 7 logically implies an assertion F,
written 7 |= F, if all models of 7 are also models of F'.

Let 7 be a set of TBox assertions. The deductive closure of T, denoted cl(7), is
the set of all assertions that are entailed by 7. Clearly, the closure ¢I(7) is quadratic in
the number of atoms of 7 and can be computed in time polynomial wrt the size of 7.

3 Understanding TBox Updates

Let £ = (7,.A) be a KB and U be a set of (TBox or/and ABox) assertions, called an
update request. What we want to study is how to “incorporate” the assertions I/ into £,
that is, to perform an update of IC. In this paper we consider only updates on the TBox
level (TBox updates), that is, when U consists of TBox assertions only.

When dealing with updates, both in the knowledge management and the Al com-
munity, it is generally accepted that the updated KB K, or the update for short, should
comply with the principle of Minimality of Change [11, 17], which states that the knowl-
edge base should change as little as possible if new information is incorporated. There
are different approaches to updates, suitable for particular applications, and the current
belief is there is no general notion of minimality that will “do the right thing” under all
circumstances [17]. A number of candidate semantics for updates have appeared in the
literature [14—17]. All these approaches can be classified into two groups: model-based
and formula-based.
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Let us first understand what are the requirements for updates of knowledge bases
and then review known model- and formula-based approaches.

3.1 Principles of TBox Updates

Let 7 be a TBox, B a basic concept, and R a basic role occurring in 7. We say that B
(resp. R) is satisfiable in T if there is a model Z |= 7 of 7 such that BZ # {) (resp.
RT £ (). If all the atomic concepts and roles occurring in 7 are satisfiable, then we say
that 7 is fully satisfiable. Intuitively, a concept “makes sense” if one can instantiate it
and we assume that we update TBoxes that make sense, that is, that are fully-satisfiable.

Satisfiability Preservation. A TBox update is a modification of a KB on the schema
level. Such updates make sense, for example, when a company decides to restructure,
say, the sales department, and the update I/ consists of new requirements for the de-
partment. Our first concern is that updates should not make parts of the schema, or
TBox constructs, useless, that is, unsatisfiable. For example, for a basic concept of an
enterprise ontology, say the concept Manager, we want to reject updates that eliminate
managers from the enterprise, that is, that force Manager to be unsatisfiable.

Protection. Our next expectation is that the schema update of the sales department

should not affect the schema of, say, the production department. At the same time we

do not mind if it affects the schemas of other departments, like for instance accounting.

That is, we would like some fragment of 7, denoted 7, to be protected from any

changes, that is, we would like 7, to be kept in the KB after the update. Therefore, we

accept an update request U only if 7, UU is fully satisfiable, otherwise we reject U.
To sum up these desiderata, we list our update principles.

Satisfiability Preservation. Updates should preserve satisfiability of basic concepts
and roles.
Protection. Updates should preserve the protected fragment of the KB.

3.2 Model-Based Approach to Semantics

Poggi et al. [19, 12] proposed to use Winslett’s semantics to update ABoxes. Let us try
to understand whether this approach is suitable for TBox updates.

Under the model-based paradigm, the objects of change are individual models Z
of 7. For a model Z of 7, an update with I/ results in a set of models of /. In order to
update the entire TBox 7 with U, one has to

(i) update every model Z |= 7 with I, and then
(ii) take the union of the resulting models.

To define the update formally we recall the following definitions. We say that an
interpretation Z is contained in T', written Z C T’, if for every atomic concept or role
symbol S it holds that ST C ST'. We write Z C 7’ if Z C 7’ and not 7’ C Z. We denote
with © the symmetric difference between sets according to the standard definition.
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Fig. 2. Updates of ontologies. Y = { TopManager = Manager}.

Let 7, C T be the protected fragment of 7 and U an update request accepted for
T,. The update of an interpretation T with U wrt T,,, denoted w-updTp (Z,U), where 'w’
indicates Winslett’s semantics, is the set of interpretations defined as follows:

{T"|T' € Mod(T,UU),thereisno Z" € Mod(T,UU)st.ToI" CIoT'}.

Then the update of a TBox T with U wrt T, is the following set of interpretations:

w-updy (T,U) = U w-updy (Z,U).
ZeMod(T)

Returning to a user the result of an update as a set of models is not desirable. What
we want is to return a KB that describes exactly this set of models. We say that a TBox
T represents the update w-updy. (T,U) if Mod(T") = w-updy (T,U).

Example 1. Consider the TBox 7 of an enterprise on the left diagram of Figure 2. In
DL-Lite .. the diagram can be written as follows:

Manager C PermStaff, AreaManager © Manager,

where PermStaff stand for Permanent Staff. The TBox says that every Manager belongs
to PermStaff and every AreaManager is a Manager. Suppose the TBox is under
construction and it was decided to extend it by introducing the inclusion assertion that
every TopManager is a Manager, that is,

U = {TopManager T Manager}.

Since there are no disjointness assertions in both 7 and U, the update request will be
accepted for 7, regardless of which fragment is protected, and the desired result of the
update is the one in the right diagram of Figure 2. Unfortunately, Winslett’s semantics
gives an undesirable result.

First, consider the following model Z of 7:

TopManager™ = {john}, Manager®™ = {frank}, PermStaff* = {frank}.

Assume that the protected fragment of 7 is empty. Then, according to Winslett’s se-
mantics, the update of the model Z contains the following interpretation Z’ is in the
update of Z, which is a model of ¢/ that differs minimally from 7:

TopManagerI/ = {john}, Managerf = {john, frank}, PermStaﬁIl = {frank}.
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As one can see, in Z' there is a Manager, john, who does not belong to PermStaff.
Therefore, the update w-upd(7T ,U) does not satisfy the assertion Manager C PermStaff.

Second, every DL-Lite representation 7' of w-upd(7 ,U) should satisfy the follow-
ing assertions, which we denote as 7y, that is, 7o C 7":

TopManager © Manager, AreaManager © Manager, AreaManager © PermStaff .

Is it the case that 7’ = 7,? It turns out that not. Consider the following model. Let Z"”
be an interpretation, where all concepts are empty, except for Manager, which contains
one individual, say fred. It is easy to see that Z” |= 7y and Z” |= U, but it cannot be
obtained by minimally changing a model of 7. Intuitively, there is no reason for fred to
have become a Manager.

Therefore, there should be some other inclusion assertions in 7", besides the ones
of 7y, that forbid the model Z”. One can see that these assertions should be entailed by
7T UU. Otherwise there are models of 7 whose update is not expressed by 7. Hence,
the only candidate to be included in 7’ is Manager T PermStaff, but it cannot be in
7', due to the first observation above. Therefore, the update is not expressible in DL-
Lite. a

We conclude that:

(i) Winslett’s semantics cannot be expressed by DL-Lite TBoxes.

(ii) The principle of minimal change at the level of interpretations forces one to give
up important assertions at the TBox level (in Example 1, we gave up the assertion
Manager & PermStaff).

We consider this situation as unsatisfactory. Hence, we next examine the formula-based
approach to updates and their notion of minimality.

3.3 Formula-Based Approach to Semantics

The key notion in this approach is the one of a maximal non-contradicting set of for-
mulas, which we introduce now.

Let 7 be a TBox and U/ be an update request that is accepted for 7,,. We define a
maximal non-contradicting set of formulas for T and U, denoted by 7,,, as a set of
TBox assertions that satisfies the conditions:

(i) T T,
(ii) T,, UU is fully satisfiable,
(iii) the set 7, is maximal (wrt set inclusion) among the sets that satisfy (i) and (ii),
that is, there is no 7 satisfying (i) and (ii) such that 7,,, C T.

Intuitively, 7,,, keeps as many TBox assertions as possible that are entailed by 7 and
do not conflict with I/.

Obviously, the set 7,,, is not unique. We denote the set of all such 7, for 7 and
U as M(T,U). There are two main approaches to construct updates 7’ of 7 with U
based on 7, [11,17].
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WIDTIO. The first approach is called When In Doubt Throw It Out, or WIDTIO for
short. It suggests to add to I the intersection of all 7,,-s, as on the left of Equation 1:

T'=uu () Tw T'=uuv{ \/ (A& O

T €EM(T U) T €EM(T U) €T,

Cross-Product. According to this approach, one adds to U the disjunction of all 7,,-s,
viewing each 7, as the conjunction of its assertions, as on the right of Equation 1.

Example 2. Consider the DL-Lite ontology from Example 1 (Figure 2) and the update
request U = {AreaManager T —PermStaff}. It is easy to see that i U T is not
fully satisfiable and in order to resolve the conflict one can drop either Manager C
PermStaff or AreaManager T Manager. Thus, M(7T,U) = {7;53),7753)}, where
’T#) = {Manager C PermStaff }, and 7722) = {AreaManager C Manager}. Let us
now consider WIDTIO and Cross-Product semantics. According to the left formula of
Equation 1, the TBox under WIDTIO semantics is equal to

Uu (Tngl) N ’Tn(f)) =UU D =U = {AreaManager T —PermStaff }.
The TBox under Cross-Product semantics is
U U {(Manager C PermStaff) vV (AreaManager T Manager)},

where we have combined DL notation with First Order Logic notation. O

As one can see from the example above, a disadvantage of the WITDIO approach is
that it may lose a lot of assertions entailed by 7 that do not conflict with /. On the other
extreme is the Cross-Product approach that suggests to keep all possible entailed and not
conflicting assertions. A drawback of the approach is that the result of the update cannot
be represented in DL-Lite anymore since it requires disjunction. Another drawback is
that the resulting set of formulas may be exponentially large wrt the original TBox.

Therefore, any practical solution should be one where one chooses some T,,(lo) among
the 7,,,, where the result of the update is:

T =uUuuT?.
We call this semantics Bold Semantics. The question is which 7,,, to choose. There are
basically three options. Choose (i) an arbitrary one, (ii) one that has maximal cardinality,
(iii) one that fulfills some preferences. For all options, the solution is expressible in DL-
Lite. Note that we rely for this on the fact that in DL-Lite the set of assertions entailed
by a TBox is finite.

The first option has the advantage that 7" is expressible in DL-Lite and can be com-
puted in polynomial time. Figure 3 presents a nondeterministc algorithm that, given a
TBox 7 and an update request U, returns a set 7, C cl(7) that is a maximal non-
contradicting set of assertions for 7 and ¢{. The algorithm loops at most as many times
as there are assertions in ¢/(7"). The number of such assertions is at most quadratic in
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INPUT: sets 7, U of TBox assertions, 7, C 7 fully satisfiable with I/
OUTPUT: aset7,, C cl(7) of TBox assertions

11 7T =UUT, S :=cl(T)

[2] repeat

[3] choose some ¢ € S; S := S\ {¢}

[4] if {¢} U Ty, is fully satisfiable then 7,,, := T,,, U {¢}

[51 untilS=0

Fig. 3. Algorithm NDMax(7 , 7,,,U) for nondeterministic computation of 7,

the number of atomic concepts and roles. The crucial step is a check for full satisfia-
bility, which is performed once per loop. If the latter test is polynomial in the size of
the input, like in DL-Lite rr (see Section 4), then the entire runtime of the algorithm
is polynomial. For the second option we showed 7,,, computation is NP-hard, but we
cannot present the proof due to lack of space. The third option is good as far as one has
reasonable preferences either on the concepts or assertions of the TBox, that gives us
polynomial time computation.

Example 3. Consider the KB and the update request from Example 2. As it has been
mentioned, M(7,U) = {TTSLI), 7, }. According to the Bold Semantics computed by
the algorithm NDMax, the result of the update is a TBox 7 = U UTn(lo) for some Tn(lo) €
M(T,U). Thus, the result of the update is either U U{AreaManager T Manager} or
U U {Manager C PermStaff }. In the former case, the ontology makes sense if man-
ageres could be temporary staff, in the latter one, if area managers are not necessarily
managers. Selecting one or the other of these two options could be done by the use of
preferences. But we do not consider this here. a

Theorem 4 (Correctness of Semantics). Bold Semantics satisfies the principles of
Satisfiability Preservation and Protection.

4 Checking Full Satisfiability

Testing full satisfiability is the key operation in computing updates under Bold Seman-
tics. We show that for DL-Lite rr the problem of checking full satisfiability of a TBox
can be translated into a problem of propositional Horn logic. The translation can be used
as the starting point for the design of efficient algorithms and it provides additional in-
sight as to why full satisfiabilty can be solved in polynomial time for DL-Lite R .

As a first step, we define a translation function v that translates TBoxes 7 into
propositional theories v(7'). For every basic concept B resulting from the signature
of 7 we introduce a fresh propositional variable vg and for every basic role R we
introduce the two variables vgr and v3p- and denote the set of all such variables as
V7. Then v(7) consists of all propositional formulas that can be obtained from 7°
using the translation in Table 1.

Let V be a set of propositional variables and F a set of formulas over V. Then we
say that F is fully satisfiable (over V) if F U {v} is satisfiable for every v € V.
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TBox assertion ¢ PL formulas v(¢)

B E B> UB, — UB,

B C -Bs VB, — 7B,

R C Ry V3R, — VU3Ry» Vsgs  V3gs

Table 1. Translation of DL-Lite 7z TBoxes to propositional theories

Theorem 5. Let T be a DL-Liteg TBox. Then T is fully satisfiable if and only if v(T)
is fully satisfiable over Vr.

Proof. The “only if” direction being clear, we only show the “if” direction.

Suppose that v(7) is fully satisfiable over Vr. Then for every basic concept B there
is a truth assignment « g for the variables in V7 such that v(7) U {vp} is satisfiable.
Intuitively, this can be seen as putting a test individual into B and letting ap propagate
this individual into additional concepts B’ so that the inclusions in 7 are satisfied.

Now we choose, for every B, a distinct element dg € A. Moreover, we define a
mapping J that maps every basic concept B’ to a subset of A by defining J(B') =
{dp | ap(vp/) = true}. Intuitively, J(B') consists of all the test individuals dp that
ended up in B’ by way of their ag. Note that due to the construction we have that
J(B") C J(B") whenever B'C B" € T.

We now define an interpretation Z’ by setting AZ = J(A) for every atomic con-
cept A and PT = J(3P) x J(IP~) for every atomic role P. That is, PZ is the
Cartesian product of the sets to which J maps the expressions for the domain and range
of P. Clearly, in this way we have that (EP)I, = J(3P) and (EIP’)T = J(3P7).
This shows that 7’ is a model of 7 such that AZ" = () and PZ" # ) for all atomic A
and P. O

Note that the proof above shows as a byproduct that a fully satisfiable TBox can be
fully satisfied by a finite model.

If 7 is a DL-Lite rr-TBox, we say that an atomic role P is functional if T contains
(funct P) or (funct P~). We say that P has a subrole if P or P~ occurs on the right-
hand side of some role inclusion.

Lemma 6. Let 7 be a DL-Liter -TBox and F a set of functionality assertions. Suppose
that no functional role in T U F has a subrole. Then T U F is fully satisfiable if T is
fully satisfiable.

Proof. LetZ’ be an intepretation that fully satisfies 7. Let D be the set of elements of A
that are in the interpretation of some atomic concept or role. Without loss of generality
we can assume that D is at most countable and that A \ D has at least countably many
elements. Then there exist countably many sets D1, Do, ... C A such that (i) every set
D;, i € N, has the same cardinality as D and (ii) the D; are mutually disjoint.

For every i € N, let m;: D — D; be a bijection. We use the m; to extend the
interpretations of atomic concepts from D to the union of the D;. Technically, we define
anew interpretation Z by letting AZ = J, .y mi(Af ") for every atomic concept A. The
definition of the role interpretations needs some preparation. For every atomic role P,

let 0 = (HP)I, be the domain of P with respect to Z’ and p)» = (EIP_)I/ be the
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range. We define p = (J,cn mi(0%) and, similarly, pp = |J;c mi(pp). Note that
due to our construction both é p and pp are countably infinite.

Now, if P is functional, then let P be the graph of an arbitrary bijective function
from §p to pp. Otherwise, let PZ = §p x pp. Clearly, by construction we have that
(EP)I = Jp and (HP_)I = pp. Hence, T satisfies all concept inclusions of 7 and all
functionality assertions.

Moreover, if R C R’ is a role inclusion in 7, we have that 07, C %, and p/; C plp/,
which implies that 6z C 0 and pr C pg. Hence, RT C R'%, since R’ is not
functional and therefore R'” is the Cartesian product of g/ and pg-. This shows that 7
is a model of 7 U F. ad

Recall that in a DL-Lite r TBoX, there can be no role inclusions with a functional
role on the right hand side. In addition, we assume that TBoxes do not contain disjoint-
ness axioms for roles. Thus, the preceding lemma is applicable.

Theorem 7. Let T be a DL-Literr TBox. Then T is fully satisfiable if and only if v(T)
is fully satisfiable over V1.

Since satisfiability of a set of propositional Horn clauses can be checked in linear
time, checking full satisfiablity can be done in time quadratic in the size of the clause
set. In [2], polynomiality of concept satisfiablity in DL-Lite rr has been proved using
the Chase technique. The techniques used for showing Theorem 7 above provide an
alternative proof.

5 Conclusion

To the best of our knowledge, our paper presents the first work on updates for DL
TBoxes. We tried to understand what are the natural requirements for such updates
and proposed two principles: Satisfiability Preservation and Protection. On the basis
of these principles, we examined the well-known semantics for updates poposed by
Winslett, which has already been applied by Poggi et al. [19] to ABox updates. The
approach turned out to be unintuitive and moreover, the TBox languages of the DL-Lite
family are not closed under such updates. As an alternative, we examined two formula-
based approaches to update semantics: WIDTIO and the Product Approach. The former
one leads to an inappropriate loss of knowledge, while for the latter update results are
not expressible in DL-Lite. As a consequence, we proposed a new semantics for TBox
updates, Bold Semantics, that satisfies both our principles. We showed that TBoxes
resulting from updates under our semantics can be computed in polynomial time for
DL-Literr. Moreover, we exhibited a tight connection between update computation
and reasoning with propositional Horn formulas. This connection can be used as the
starting point for the design of efficient update algorithms and it provides additional
insight as to why TBox reasoning can be solved in polynomial time for DL-Lite r.
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Abstract. We describe Orel, a reasoning system for an ontology laregudwich

subsumes both the EL and the RL profile of the recently staliskd web on-
tology language OWL 2. Orel performs consequence-driveisaeing on the
database level which is always sound. It is guaranteed toinglete if the ontol-
ogy is contained in one of the two profiles. We present the tyidg calculus,

the core algorithm, and initial evaluation results.

1 Introduction

With the standardisation of the Web Ontology Language OWh 2009 1], the de-
velopment of theoretically well-studied and practicalgptbyable expressive ontology
languages for the Semantic Web has reached a new level ofimaflmong various
other improvements, the new version of OWL is the first thatcptely addresses the
trade-df between logical expressivity and scalability that is irgmeito formal knowl-
edge representation by specifying additional light-weighguage profiles. The three
OWL 2 profiles EL, RL, and QL constitute sublanguages whichhitenstill sufficiently
expressive for many applications — exhibit a polynomiaktiocomplexity for standard
reasoning tasks, and are therefore particularly suitale/6rking with large ontologi-
cal descriptionsd].

The Orel software that is introduced in this system desomgtrovides storage and
reasoning services for both OWL EL and RL. The specific festtinat set it apart from
existing implementations are twofold. First, its implertegion is tailored toward ma-
terialisation of entailments in a persistent storage badleeich as a relational database
management system (DBMS). Second, it realises a rule-laggedach for implement-
ing both OWL RL and OWL EL inferencing in a single polytime atghm.

Orel's approach to reasoning is to express inference task®WL 2 in terms of
inference tasks for the simple rule language dataBlgThe basis of this method is
an entailment-preserving translation of descriptiondsdo datalog that has been intro-
duced in f]. The latter approach has been presented for a hybrid antalae language
that includes features which cannot be expressed in OWL i8.drbvides an interest-
ing path for extending Orel to also cover some of the exprigsif rule languages like
SWRL [5] or RIF-BLD [6], but the present paper focusses on the supported OWL 2
features only.

In Section2, we discuss Orel’s inferencing calculus, and present soptienisa-
tions for data-centric processing. Thereafter, in Se@jame briefly highlight our basic
approach for extending this inferencing mechanisntlicient schema inferencing, and
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PhD C AcademicDegree PostDoc C Fhas.PhD Graduate = Jhas.AcademicDegree

PhD(x) — AcademicDegree(x) Graduate(x) — has(X, dipasap)
PostDoc(x) — has(X, dinasphp) Graduate(x) — AcademicDegree(dnasan)
PostDoc(X) — PhD(0ahasprp)  has(x, y) A AcademicDegree(y) — Graduate(x)

Fig. 1. Example translation to datalog

in Sectiord, we recall the general techniques for adapting a rule-besledlus for ex-
ecution in a relational DBMS. Sectidprovides further details on the implementation
and initial evaluation results. We discuss related workent®n6 and give an outlook
to the future development of Orel in SectiérOrel is free software that can be obtained
athttp://code.google.com/p/orel/.

2 A Data-Driven Approach for Translating OWL into Datalog

The algorithms in4] extend to a first-order knowledge representation langdagéed

ELP that combines features of the description la§i€™* [7], Description Logic Rules
[8], and DL-safe Rulesd]. Yet, the expressivity oELP has been restricted Siciently

to allow for polynomial-time reasoning. Instead of repegtihe formal details that can
readily be found in 4], we summarise the underlying approach by means of a brief
example, and provide more detailed descriptions of therélgos that are actually im-
plemented in Orel. Throughout this work, we use descrigtgit syntax for concisely
expressing the semantics of OWL 2 axioms.

As an example, consider the set of OWL 2 axioms in Higtop). Following a
strategy as in4], this knowledge base would be translated into the rulersélg. 1
(bottom). These rules are intended to be read as first-ondglicdations based on a
standard predicate logic semantlclote that the translation is faithful regarding the
signature: OWL classes are translated into unary predicatel OWL properties into
binary predicates. Thus it is not hard to see how axioms fieendriginal ontology
relate to implications in the translated datalog program.

While this translation is straightforward in many caseqectal approach is needed
to cover existential expressions a®injectSomeValuesFrom. Since datalog does not
allow existential entailments, auxiliary constants ateoduced to represent additional
“anonymous” individuals the existence of which is requitgdthe ontology. Please
note that only a single constant is introduced ffieeted class expressions during the
translations. This limits the amount of additional indivads that need to be considered,
and it is vital to retain polytime complexity.

While the above translation is rather intuitive for the mpatt, the presented en-
coding has several practical drawbacks that come to thexfbesm attempting an actual
implementation. In particular, the created rule set maybezrather large; it grows
linearly with the size of the knowledge base. However, tgpld® engines exhibit far

1 Since we are only interested in positive entailments, assymnon-monotonic semantics for
datalog would not lead to fierent inference results. Se® for details.
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A(n) — inst(n,A) ACC
R(h,m) — triple(n, R m) AnBCEC
JRSelf(n) — self(n,R)
JRACC — subSomeValues(R A, C) JdRSelfC C — selfImplies(R C)
AC dRB - someValues(A, R B, darg) |ALC JRSelf — impliesSelf(A, R)
ACVYRB — allvValuesFrom(A R B) AC <1RB — atMostOne(A R B)
RC T +— subProperty(R T) Disj(R, S) — disjoint(R S)
RoSC T +— subPropertyChain(R S,T) R CS — subInverseOf(R S)
For each individual name in the ontology, add the faeom(n) to the transformation.
For each class name or nomirfain the ontology, add the fastubClass(A, T).

subClass(A, C)
subIntersect(A B,C)

U

Fig. 2. Creating an initial fact base from DL axioms in Orel; for ass& defineC := n
if C = {n}is anominal class, and := C if Cis a class name, or L

better performance when more facts and less rules are @uilarly, DBMS can han-
dle large amounts of data while implications in the abovetaation work on this data
and would thus correspond to database operations. Theewidrstherefore introduces
a modified approach that is taken in Orel. This observatidls tar a different encod-
ing strategy, where ontological information (such as sagglelationships) is stored as
facts, while logical ramifications are governed by “metkestithat resemble the rules
of a deduction calculus. Thereby, classes and properties toabe treated as datalog
individuals. The above example might then be encoded byall@xfing facts:

subClass(PhD, AcademicDegree)
someValues(PostDoc, Has, PhD, dinasphp)
someValues(Graduate, Has, AcademicDegree, dinasap)
subSomeValues(Has, AcademicDegree, Graduate)

The predicate names used here hint at the intended intatiprebut are not formally re-
lated to the OWL 2 vocabulary. Note that the auxiliary conttasnaspnp @anddanasap
are already included in the above facts. Since we are iriggtés a rule set without
function symbols (datalog), all required constant symhisst be explicitly created
beforehand. We now can encode the intended semantics iratleni rules such as the
following:
subClass(a, b) A inst(x,a) — inst(x,b)
someValues(a,r,b,d) A inst(x,a) — triple(x,r,d)
someValues(a,r,b,d) A inst(x,a) — inst(d,b)
subSomeValues(r,a,b) A triple(x,r,y) A inst(y,a) — inst(x,h),
Here we encode assertions about instances in the obviousitvathe additional meta-
predicatesinst for class instances, and-iple for role assertions. All terms in the
above rules are variables, but here and below we uBereint letters for capturing the
underlying intuition:a, b, c for class names, s, t for role namesy, y, zfor individual
names, and for auxiliary constants.

As in the above example, most features of OWL EL and RL can ppated by
suitable meta-rules based on the datalog translatiofi.if-pr the most prominent fea-
tures of the two profiles, the translation of axioms to meiets is specified in Fig2,
and the according materialisation rules are presentedjirBFT he translation assumes
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(2) nom(X) — inst(X, X)

2) nom(X) A triple(x,r,x) — self(x,r)

3) subClass(a, b) A inst(x,a) — inst(x, b)

4) subIntersect(a,b,c) A inst(x,a) A inst(x,b) — inst(X,c)

(5) subSomeValues(r,a,c) A triple(x,r,y) A inst(y,a) — inst(X,cC)

(6) someValues(a, p,b,d) A inst(x,a) — triple(x, p,d)
@) someValues(a, p,b,d) A inst(x,a) — inst(d,b)

(8) selfImplies(r,c) A self(x,r) — inst(X,C)

9) impliesSelf(a,r) A inst(x,a) — self(xr)

(10) impliesSelf(a,r) A inst(x,a) — triple(X,r, X)
(11) subProperty(r,t) A triple(x,r,y) — triple(xt,y)
(12) subProperty(r,t) A self(x,r) — self(xt)

(13) subPropertyChain(r,s,t) A triple(x,r,y) A triple(y, s 2) — triple(xt,2)
(14) disjoint(r, s) A triple(Xx,r,y) A triple(x, S,y) — inst(X, 1)
(15) inst(X,y) A nom(y) — inst(y, X)

(16) inst(X,y) A nom(y) — nom(Xx)

17) triple(XL,r,y) A inst(X2,y) A nom(y) — triple(xl,r, x2)
(18) allvaluesFrom(ar,b) A nom(X) A nom(y) A

triple(x,r,y) A inst(x,a) — inst(y, b)
(19) atMostOne(a, r, b) A nom(x) A nom(y;) A nom(y,) A inst(Xx, a) A
triple(X,r,y1) A inst(ys, b) A triple(X,r,¥,) A inst(yz, b) — inst(yl,y2)
(20) subInverseO£f(r, s) A nom(X) A nom(y) A triple(x,r,y) — triple(y, s X)

Fig. 3. Inference rules for deriving entailments in Orel

that all axioms have first been decomposed into a simplifiechabform that does not

use more than one concept operator per concept expressisimplify the presenta-

tion, we use the names of classes, roles, and individualggkasT and_L as constant

symbols in the database instead of assigning numericatiiides to such names as
done in the actual implementation.

Regarding the rules of Fig, we can observe that the rules only derive new facts
for the predicatesnst, triple, andself that correspond to assertional axioms, as
well as for the auxiliary predicateom. To see the purpose of the latter, first note that
a special simplification of the rule set is achieved by usimg same identifiers for
individual names and for nominal classes containing oniy itdividual. Constants
that can be considered as nominal classes are markedhwwitlso that the rule (1) of
Fig. 3 generates tautological assertions of the f¢mjn). It is not hard to see that all
equality statements that can be derived in OWL EL must irvalMeast one individual
name, and can thus be expressed by a class assertion axiamdarinal class. These
observations allow us to simplify the equality theory 4fffo rules (15)—(17) of Fig3.

All rules that relate to features that are specific to OWL R rastricted to individ-
uals innom. This corresponds to the restriction of DL-safety that hesrbalso used in
[4]. As noted there, the relevant entailments of an OWL RL aygglcan be obtained
when restricting reasoning taamed individuals. Anonymous individuals, in contrast,
cannot be inferred to existin OWL RL and are only relevantfierEL part of a knowl-
edge base. As discussed #],[the DL-safe combination of EL and RL features not
only captures all entailments that would be expected frahreelanguage in isolation,
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but also allows some semantic interactions between the awgulages. In this case,
however, the above inferencing algorithm is not guaranteguoduce all entailments
—indeed, a polynomial time algorithm cannot achieve thisl go

Features that are missing in Fig.and 3 are only OWL EL's restricted form of
property ranges, the universal role, and concrete domdata (anges). Orel interprets
all property ranges as OWL RL axioms of the formtz YR.C, and does not currently
support the universal role. Concrete domains, howevesgported and the according
rules are omitted here for reasons of space. Various othaurtes, such as assymmetry
of roles, that have been omitted above can readily be exguidaserms of the given
features.

Finally, it should be observed that the given inferencesdie not materialise facts
that can be concluded if the knowledge base is inconsidtientever, it is ensured that
inconsistencies lead to derivations of the foimst(n, L) for some constam. Orel
checks for this condition for being able to return correcéveers without explicitly
materialising all possible inferences in the database.

3 Schema Reasoning with Orel

The calculus that has been introduced above is able to dessertional axioms such
as the instances of an atomic concept. For complex concg@péssions, it might be
required to first extend the knowledge base with auxilianp@ars and to (re)complete
the materialisation process thereafter. Such auxiliaigrag, however, are hardly af-
fecting the semantics of the knowledge base since they paataely extend it, and

hence many such checks can safely be performed withoutirestite database.

The matter is dterent when checking for the entailment of schema axioms such
as concept subsumption. Indeed, there are practically rii@pioontologies such as
SNOMED CT which do not contain any individual names, and fbiale concept sub-
sumption is the chief inferencing problem. It is well knowrat this problem can be
reduced to instance retrieval: for checking if an axidrnz B is entailed, a new “test”
individual c is introduced into the knowledge base together with theraseeA(c). If
this impliesB(c) then the subsumption is concluded.

Unfortunately, this approach to testing does not preséee¢mantics of the knowl-
edge base. Indeed, assert&(@) may even lead to a global inconsistency (in which case
B(c) and thusA C Biis also entailed). Thus, test assertions disallow the rzévellel
execution of many queries that could be considered typared fdatabase system, and
they require possibly expensive deletion operations #fftertest is finished. While it
is of course possible to execute each test on a separate ttmydatabase — possibly
realised by marking facts in the database as belonging taiayar test instead of sep-
arating databases on the DBMS layer — this approach melipiie data that has to be
stored at each time, and reduces the performance gains ther-use of persistently
stored previous computations.

The problem is less severe when restricting to smaller laggs than OWL EL.
For example, the algorithm described 0] computes all concept subsumptions of an
ELH knowledge base in parallel without executing separate feseach. WhileS LH
allows for this mode of reasoning, it is not clear how to elssalsuch an algorithm for
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EL™. In particular, the original algorithm as proposed7hig incomplete. The glitch
can be fixed, but only at the price of specifying the subsuompixiom the entailment
of which is to be tested before running the algorithm, thugiiéng many runs instead
of one. We conjecture that this is unavoidable.

Due to these diiculties, Orel uses a mixed approach for finding concept supsu
tions. The calculus uses the simple rules that have beesdinted above when this is
guaranteed to yield correct results, but it creates additioopies of axioms when the
computation results in derivations that cannot be handigtlis manner. The goal of
our approach is to avoid the significant overhead that isiredqun the general case
whenever possible, but tuning the calculus for this purp@sebject of ongoing work.
Currently, Orel’'s schema inferencing is moffi@ent when ontologies do not contain
nominal classes (in certain problematic contexts), anddteases in performance when
combinations of nominals, existential quantifiers, and ORILfeatures occur.

4 Applying Derivation Rules on RDBMS

Relational database management systems (RDBMS) areethitoward the process-
ing of large amounts of data, and th@&ent manipulation of such data. As such they
appear to be well-suited for implementing materialisattona persistent storage sys-
tem. However, inferencing operations are often still ratitgpical for RDBMS since
they involve large inner joins over all entries in a table.rgtover, RDBMS provide
elaborate functions such as transaction management thatoarequired by typical
inferencing scenarios but that can significantly slow dowarations. For this reason,
various optimisations are needed for using RDBMS as a basisnplementing the
outlined inferencing procedure.

It is well-known that datalog rules are closely related t@mpions in relational
algebra B]. The correspondence is achieved by storing the extendieaah datalog
predicate in a database table, the columns of which cornesfaothe arguments taken
by the predicate. Rule (3) of Fi@. could therefore be realised by the following SQL
operation:

INSERT INTO inst (x,y) SELECT tl.x AS x, t2.y AS y
FROM subClass AS tl1 INNER JOIN inst AS t2 ON tl.x=t2.y

Executing this SQL statement extends imat table with all facts that can be de-
rived in one application of rule (3) of Fi@®. We provide this statement for illustrating
the mapping to SQL commands — using it iteratively in an impatation would lead to
prohibitively large amounts of unnecessary computatibmeed, the operation derives
the same conclusions in each iteration, just like the oalginle does when processed
operationally.

Various optimisations have been proposed and thoroughgtigated to overcome
this problem B]. One way to increasefiéciency is to keep track of the iteration step
in which a fact was derived, and to make sure that rule apics.require new facts
to be involved in the derivation. This leads to the so-ca#adi-naive bottom-up eval-
uation which is largely used in Orel. Writinthst' for the predicate that corresponds
to the extension ofnst as derived in step this strategy boils down to evaluating the
following rule:
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subClass(x,y) A inst'(y,2) — inst'*1(x, 2)

Unfortunately, semi-naive evaluation can still deriveglanumbers of redundant
facts during inferencing. Moreflécient general purpose optimisations lik@gic sets
are available when only certain entailments are of intdigptcally at query time) but
are not useful for full materialisation. But moréieient forward chaining algorithms
do exist as well, and have been studied in the area of datgbase in particular in
relation with transitive closure computatiorid]. Since these approaches often assume
very simple rule sets, they can not be directly adopted tintleeence rules of Orel, and
part of the ongoing developmenftert around the tool is to suitably adapt techniques
from this area.

5 Implementation and Initial Results

Orel is implemented in Java, using the OWL ARP] for accessing OWL documents.
The current default RDBMS that is used in Orel is MySQL altiloonly minor adjust-
ments would be needed to move to another RDBMS. Orel is frieae and can be
obtained (including its source code) frdmtp://code.google.com/p/orel/.

The current implementation of Orel is still not fully optised in various respects.
On the one hand, we are exploring heuristics for improving itifferencing control
flow. On the other hand, optimising database queries for icpiar RDBMS is a te-
dious process with many dependencies on the technicabinficure used in testing.
We have found that flierent server setups and machine configurations can lead to a
50% reduction in ontology loading times while incurring aveldown of several orders
of magnitude for materialisation. Thus, while we cannoegigproducible evaluation
figures, we can provide some first insights into general nnmthbehaviour.

The OWL 2 test caséhave been used to test the correctness of the implementation
For performance testing, we specifically focussed on thekvelwn SNOMED CT on-
tology, a medical terminology of about 425,000 axioms witlirang focus on subclass
subsumptions. We considered loading and inference mkgatian for this ontology.
Load times have shown to be rather similar across very systéaiverse performance,
typically ranging between 9min and 20min. These times reftex slow inserting be-
haviour of relational databases — the given times are ajreaded on an optimised
loading phase that controls transaction management arexiitgl and that exploits
client-side caching and rewritten bulk updates. Yet, thiging speed is a strong limit-
ing factor (computing the data for writing takes but a fewasw®ts). Application areas
for DBMS-based systems of course assume axioms to changsl@w aate, thus re-
ducing the relevance of initial loading times.

Loading does not involve reasoning, i.e. materialisatidrthe current stage of im-
plementation, Orel is able to successfully classify SNOMEDbut it cannot compete
with highly optimised in-memory systems like Cond@&8]; almost 2 hours are needed
on a fast database server. This reflects some of the lim&tbusing an fi-the-shelf
RDBMS, and we expect significant potential for speed-up bggialternative back-
ends. Similar results have been reported for the SAOR int&rengine for OWL Horst

2http://owl.semanticweb.org/
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[14], and we are not aware of any system that uses MySQL as a liagdweckend.

In spite of the comparatively low performance of the curierglementation, we were
still able accomplish major speed improvements for thestfi@ation by improving con-

trol structure and inference rules. Most of these optinosatare directly applicable to
other backends as well.

6 Related Work

The objective or Orel is to provide a stable framework for O\wtology manage-
ment and inferencing based on persistent storage. Appesadfhule-based bottom-up
materialisation of consequences have a long history, aetitberefore can build on a
significant amount of prior work, both practical and thewwatin nature.

On the theoretical side, there is a large body of well-e&hbtl research to be found
in the area of (relational) databases, especially relatelet optimisation of recursive
queries B] and the construction of materialised viewld]. We have discussed herein
only briefly the basic use of a semi-naive evaluation stsategt other approaches are
applicable in a similar fashion when optimising for furthese cases. Typical exam-
ples for such techniques are magic sets (used for optimeangplex bottom-up com-
putations needed at query time) and incremental matexiadis (used for iciently
recreating inferences when new data is added).

More recently, much work has been conducted on “no-SQL’ aggiies to per-
sistent storage, leading to a number of database-likeragstieat are tailored toward
improved gficiency for non-relational data schemes such as sets of RplEsr JSON
documents, or simple key value pairs. These developmentbedeneficial for se-
lecting more suitable storage backends for Orel in the &jthut they are not directly
related to the work on the current system. Indeed, Orelkitacture abstracts all stor-
age operations so that inference and control structuresdefer to SQL or any other
concrete DBMS feature in any way.

On the more practical side, there are a number of past andrtusystems that
support rule-based inferencing on relational databasesai not aware of any tool
that supports more than a single OWL 2 profile based on suctpproach, making
Orel's multi-profile integration novel. Also, the overalichitectures of systemsftker
significantly, even if rule-based inferences are used atdhne. The main relationship
to Orel therefore is in the actual reasoning module thatratds a knowledge base
for a given set of rules, whereas functions such as checkingiagy entailment are
often highly specific to a given tool. In fact, we do not knowaofy freely available
database-driven reasoner that can check ontology entgilimeany OWL profile, the
implementation of which was not a minor part of the currergl@ystem.

The system whose inferencing is most closely related to Sréde DB reasoner
for ELH [10]. This system supports only a small fragment of the OWL ELfifrpbut
the rules applied for this part are closely related to thasslun Orel for the respective
features. The only inference problem that DB supports issifigation, but it shows
some very good performance characteristics for this tagle@ally regarding memory
usage.
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The only other database-driven inference enginestfirthat we are aware of is a
prototype system that was presentedif]] In this case, the focus is on conjunctive
query answering, with the main contribution being to shoat tuch queries can be
answered rather directly on databases with a certain statetrialisation. Loading
performance and memory consumption have not been optirmsiis work, and are
not as good as for the DB reasoner, but outstanding querpmeahce could be ob-
tained. The existence of prototype systems like the abodet@eur motivation for
developing a stable, free platform that can be used to iate@nd refine the underlying
approaches and algorithms.

Most other database systems that support OWL reasoning fmc@WL RL or on
a subset thereof. The most current such implementatiowsteported is the OWL
reasoner of Oracle 113Many systems focus on DLPL]] or pD* [1§], thus provid-
ing only incomplete coverage of OWL RL inferencing. Promminexamples include
OWLIM [19], DLDB2 [20], and Minerva R1].

Further systems provide yet more restricted amounts of OWRDFS inferences
mostly for augmenting RDF-based instance data. An integsxample is SAOR for
which a non-standard storage implementation has lead tifis@nt performance in-
creases as compared to MySQU4]. Even though SAOR does not support many OWL
features yet, this hints at the potential that non-SQL detab may have for improving
the dficiency of systems like Orel.

Finally, rule-based inferencing on top of RDF data has begparted by some
tools, the most prominent among which is probably Jena widatures a proprietary
inference rule implementatidhin this case, rules are rather understood in the sense of
production rule systems where they form a configurable gaanaapplication that is
used to perform relevant computations.

A rather diferent class of database-driven ontology reasoners arensyshat al-
low for OWL QL querying, such as the QuOnto systefihe nature of the problems
involved here are somewhatfidirent, and query rewriting often plays a central role.
However, recent works in this field have also suggested thefipartial materialisa-
tion for improved query performanc2?].

7 Conclusion and Future Work

We have presented the new ontology inference and managemgine Orel, and its
underlying approach based on rule-based bottom-up migatian of consequences
in a database. Similar materialisation approaches have éqaored for (sometimes
incomplete) OWL FuJlRDF(S) inferencing, most notably in SAOR4] and OWLIM
[19]. Conversely, there are also a number of fast in-memoryeémgintations available
for handling (parts of) OWL EL. Orel is éfierent from both classes of systems as it
provides RDBMS based inferencing for OWL EL, and is using\a akgorithmic basis
that allows for a unified treatment of OWL EL and RL.

Shttp://www.oracle. com/technology/tech/semantic_technologies/
“http://jena.sourceforge.net/inference/
Shttp://www.dis.uniromal.it/~quonto/
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The ongoing work on Orel pursues a number of independensg@éicourse, per-
formance is considered as a core challenge, and both thetitedealculus and the
storage backend can be improved to address it. For imprdkéngalculus, we develop
rule sets that avoid redundant conclusions, and experimigmoptimisation methods
for efficiently computing closures of datalog programs. Regarttisgtorage backend,
we consider other database paradigms related to recenQhafproaches. Another
vital feature for a database-driven system dfeient update methods for adding and
deleting axioms without recomputing all derivations. Medhk for maintenance of ma-
terialised views are well knowrlp], but strongly depend on the details of the imple-
mented calculus.

Besides these obvious goals, there are a number of integeditiections to fur-
ther develop the core system. Relevant additional featnobsde (conjunctive) query
answering, explanation, and extensions with non-stanebgocessive features such as
nonmonotonic inferencing. Other important fields of reskaroncern distribution and
parallelisation. At the same time, we seek concrete agitacenarios that can be
used to explore the practical utility of a robust and sca&VL inferencing system.

Acknowledgements. The work reported herein has been supported by the EU ingiroje
ACTIVE (IST-2007-215040) and by the German Research Faiomander the Ex-
presST project.
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Abstract. In this paper, we revisit the problem of definitorial completeness, i.e.,
whether a given general TBox 7 in a description logic (DL) . can be rewritten
to an acyclic TBox 7" in .#. This is an important problem because crucial opti-
misations in DL reasoners rely on acyclic parts in TBoxes. It is known that such
rewritings are possible for definitorial TBoxes in ALC and in logics ALCX for
X C {S,H,Z}. Here we establish optimal bounds on the sizes of the result-
ing acyclic TBoxes. In particular, we reduce the known triple exponential upper
bound on ALC-TBoxes to single exponential. Additionally, we prove the same
upper bound for those extensions with X C {S,H, Z} for which there was no es-
tablished result before. This means, together with the already known exponential
lower bound for ALC, that our bounds are tight.

1 Introduction

Description logic (DL) TBoxes enable one to introduce names for complex concepts
using concept definitions. For example, the definition Parent = Mother U Father
classifies all individuals that are either mothers or fathers as parents. Here, Parent is
called a defined concept, and Mother and Father are primitive concepts. In some sense,
instances of primitive concepts come directly from the application domain whereas
defined concepts help us to define views or constraints. Baader and Nutt [1] call a finite
set of concept definitions a ferminology if no concept name is defined more than once.

Terminologies can be cyclic, i.e., a defined concept may refer to itself directly in
its definition or indirectly through some other defined concept. Cyclicity is a syntactic
condition and for certain cyclic terminologies there may be equivalent acyclic ones. For
example, the definition

Parent = (Parent U —Parent) M (Mother L Father)

contains the tautological expression ( Parent Ll - Parent). By removing this expression
we obtain an equivalent acyclic definition.

Acyclic TBoxes are of particular interest because reasoning with them is “eas-
ier” than with general TBoxes. For example, satisfiability of an acyclic ALC-TBox
is a PSPACE-complete problem whereas the variant of the problem for general ALC-
TBoxes is EXPTIME-complete [2]. On the practical side of things, absorption is an

* The first author would like to thank Maarten Marx for his hospitality and the stimulating
discussions. This work has been partially supported by the EU project Ontorule.
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126 Optimal Rewritings in Definitorially Complete Description Logics

indispensable optimisation technique in DL reasoners which makes use of the acyclic
part of a TBox [3]. Therefore a natural question arises: from which cyclic terminologies
can we obtain equivalent acyclic ones? Baader and Nutt answer this question by iden-
tifying a semantic condition on terminologies called definitoriality [1]. Intuitively, if a
terminology is definitorial and the instances of primitive concepts are known then the
instances of defined concepts are completely determined. In particular, Baader and Nutt
show that ALC is definitorially complete, i.e., for every definitorial ALC-terminology
there is an equivalent acyclic ALC-terminology. As also noted by the authors, definito-
rial completeness is a form of Beth Definability [4] — a property of first-order logic —
for DLs.

Another relevant question which is of practical interest is how an equivalent acyclic
terminology can be obtained from a definitional one. Ten Cate et al. [5] give a con-
structive method for calculating an acyclic ALC-terminology from a definitorial one
and prove definitorial completeness for some extensions of ALC. To be more precise,
Ten Cate et al. consider the same problem for general TBoxes instead of terminologies.
In general TBoxes, it is not clear from the syntactic shape of the TBox anymore which
predicate is primitive and which is defined. In this setting, primitive predicates are as-
sumed as given. Moreover, Ten Cate et al. establish a single exponential lower and a
triple exponential upper bound on the size of the generated TBoxes in ALC. However,
the exact characterisation of the succinctness of general TBoxes over acyclic ones was
left as an open problem.

In this paper, we reduce the upper bound on the size of the equivalent acyclic termi-
nologies obtained from definitorial . ALC-TBoxes to single exponential, which is tight.
We then extend this result to all logics ALCX for X C {S,H,Z}, for which there were
no earlier established results. In previous work [6], we used Beth Definability (adapted
to DLs) to rewrite a given concept into an equivalent one for efficient instance retrieval
using databases. Our results in this paper extend to that scenario as well. More precisely,
here we give an optimal version of the algorithm that computes rewritings.

We start by giving a brief introduction to standard notions we will use from DLs
in Section 2. In Section 3 we give our main result for ALC after introducing relevant
terminology. These results are based on the algorithm we present in Section 4. Our
results for extensions of ALC are presented in Section 5, after which we conclude.

2 Preliminaries

Let N¢o and Np be countably infinite and disjoint sets of concept and role names,
respectively. With Np we denote the set of predicates No U Ng.

The set of SHZ-roles is defined as Ngp U {R~ | R € Nr}. A role inclusion axiom
is of the form R C S, with R and S SHZ-roles. A transitivity axiom is of the form
Trans(R), for R a SHZ-role. A role hierarchy H is a finite set of role inclusion and
transitivity axioms.

For a role hierarchy H, we define the function Inv over roles as Inv(R) := R~ if
R € Niand Inv(R) := Sif R = S, for some S € Ng. Further we define Cy; as the
smallest transitive reflexive relation on SHZ-roles in H such that R T S € H implies
R Ty Sand Inv(R) Ty Inv(S).
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The set of SHZ-concepts and their semantics are defined in the standard way [7].
A SHZI-TBox T is a finite set of concept inclusion axioms C = D and/or concept
definitions A = C, where A is a concept name, and C' and D are SHZ-concepts.
A SHZ knowledge base (KB) K is a pair (7,H), where 7 is a SHZ-TBox and H
is a role hierarchy. For a SHZ-concept C' and a SHZ-KB K = (7,H), rol(C,K)
and sig(C, K) denote, respectively, the sets of role and predicate (i.e., concept or role)
names occurring in C or C. We are interested in special acyclic TBoxes.

Definition 1 ([5]). Let T be a TBox. A concept name A directly uses a concept name
B in T if there is some A = C € T and B € sig(C); uses is the transitive closure of
the relation directly uses.

Let X Csig(T). T is X-acyclic if it satisfies the following two properties:

1. T consists of exactly one concept definition A = C for each concept name A €
(sig(T) \ X)), plus a number of concept inclusion axioms C T D, where sig(C') C
XY andsig(D) C X.

2. There is no concept name A that uses itself in T .

The notion of an interpretation satisfying a role hierarchy or TBox is defined in the
usual way (cf. [7]). An interpretation 7 satisfies K = (7, H) if and only if 7 satisfies 7
and H. In this case, we say that 7 is a model of K. KC is satisfiable if K has a model. Two
KBs are equivalent if they have the same models. A concept C is satisfiable w.r.t. K if
and only if there is some model Z of K such that CZ # (). The concept subsumption
and equivalence problems, i.e., checking whether K = C' C D (respectively, (K |=
C = D), are defined in the usual way.

A concept C' is in negation normal form (NNF) if and only if the negation sign
appears only in front of concept names in C. A concept can be transformed into an
equivalent one in NNF in linear time and thus, we assume all concepts to be in NNF.
For a concept C, we denote its negation in NNF by -C'. Moreover, we will sometimes
consider only concept inclusions of the form T T C' to which every concept inclusion
and definition can be rewritten again in linear time.

The concept closure cl(Cy, K) of Cp and K is the smallest set of concepts satisfying
the following conditions:

Coy € C|(Co,IC);

if TC C e T then C € cl(Cy, K);

if C € cl(Cy, K) and D is a subconcept of C then D € cl(Cy, K);

if VR.C € cl(Cy,K), S Ey R, and Trans(S) € H then VS.C € cl(Cy, K).

We define the notions of closure f(e), for f € {sig,cl,rol} and e € {C,T,H,K},
analogously. The size of a concept C' (written |C) is the number of elements in cl(C).
ForaTBox 7, |7 | := ) trcer O]

3 Beth Definability

We introduce in this Section implicit and explicit definability for concepts. We used
these notions in [6] to reduce the instance retrieval problem in DLs with DBoxes to
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SQL query answering. In this section, we will use them again to rewrite definitorial
TBoxes into acyclic ones in a more direct way than Ten Cate et al. did in [S5]. We start
by giving a semantic characterisation of implicit definability.

Definition 2 (Reduct). Let T = (AT, -T) be an interpretation and let 5 C Np. An
interpretation J = (A7 ,-7) is the reduct of T to X (denoted by I|x) if and only
AT = A7 and -7 is defined only on the symbols in X.

Definition 3 (Implicit definability). Ler C be a concept, K a KB, and X C sig(C, K).
C is implicitly definable from X under IC if and only if for any two models T and J of
K, AT = A9 and I|s = J|x implies CT = C7.

In other words, given a TBox, a concept C is implicitly definable if the set of all its
instances depends only on the extension of the predicates in 2.

Example 1. Consider the KB K = (7, (), where 7 is equal to:

Project C Activity

Meeting T Activity

Activity © Project LI Meeting
Project C = Meeting

and let X = {Meeting, Activity}. Project is implicitly definable from X under K
since its extension depends only on the (fixed) extension of Meeting and Activity.

The following proposition provides an alternative, syntactic definition of implicit defin-
ability. In particular, it reduces checking implicit definability to the entailment problem
in the same logic. Let a concept C (resp., KB K) be like C' (resp., K) except that every
occurrence of each predicate P € (X' \ sig(C)) (resp. P € (X \ sig(K))) is replaced
with a new predicate P.

Proposition 1. A concept C'is implicitly definable from X' under K if and only if K U
KEC=C.

If a concept is implicitly definable from X, then it may be possible to find an expression
using only predicates in X' whose instances are the same as in the original concept: this
would be its explicit definition.

Definition 4 (Explicit definability). Ler C be a concept, K a KB, and X C sig(C, K).
C is explicitly definable from X under IC if and only if there is some concept D such
that K = C = D and sig(D) C X. Such a D is called an explicit definition of C from
X under K.

In Example 1, the explicit definition of Project is Activity M —Meeting. It is not hard
to see that explicit definability implies implicit definability. Beth [4] shows that the
converse holds for the case of first-order logic: if C' is implicitly definable from X' in
IC, then it is explicitly definable. This property for ALC with general TBoxes is proved
in [6] by exploiting interpolation. Here we state a stronger version of the theorem in [6]
by putting an exponential bound on the size of the explicit definition and give the proof
again to show how interpolation is used.
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Definition 5. Let K = (7, H) be a KB. A labelling of K is an ordered pair (K1, K,) of
KBs where Ky = (71, HMh), Ky = (Te, Hy), T = T U Ty, and H = Hy U Hy; (71, 72) is
a labelling of the TBox T .

Definition 6 (Interpolant). Ler C, D be concepts and let K be a KB such that K =
C C D. A concept 1 is called an interpolant of C and D under a labelling (Ky, K,) of
K if sig(I) C sig(C, K1) Nsig(D,Ky), K=CCT ILand K =1C D.

Section 4 is devoted to a constructive proof for the following lemma by using an optimal
tableau calculus for ALC.

Lemma 1. Let C and D be ALC-concepts and let K = T be an ALC-KB such that
K E C C D.If(Ky,K,) is a labelling of K then there exists an interpolant of C and
D under (K1, KC,) whose size is at most exponential in |T| + |C| + | D).

Theorem 1 (Beth Definability). Let C' be an ALC-concept, let K = T be an ALC-
KB, and let X} C sig(C,K). If C is implicitly definable from X under K then C is
explicitly definable from X under K, and the size of the explicit definition is at most
exponential in |T| + |C|.

Proof. We have that K UK = C' = C by implicit definability of C Moreover (K,K)
is a labelling of K U K. Now, by Lemma 1 and |C| =
C and C under (K, K) and the size of I is at most exponennal in [T] + |C]. Since it
is an interpolant, sig() C sig(C,K) N 5|g(C’ K) = X, andboth () CUK = C C I
and (b) K UK |:I CC. By(b)andlCUlC |:C’ C O, we have K U K EICC,
from which K U K E C = I follows by (a). From the structure of K and the fact that
sig(C), sig(I) C sig(K) straightforwardly follows that IC |= C = I. O

This proof of Beth definability for ALC with general TBoxes is constructive, provided
we have a constructive method of finding interpolants as defined in Definition 6. As we
will see in Section 4, this constructive method is based on tableau. To be more precise,
the tableau algorithm will allow us to check whether a concept is implicitly definable
and if this is the case, we will use the same tableau proof to construct an explicit def-
inition. Note that Theorem 1 also establishes a single exponential upper bound on the
size of explicit definitions we calculate. Together with the following theorem which es-
tablishes the lower bound, we can conclude that our procedure for calculating explicit
definitions is worst-case optimal.

Theorem 2 ([5]). There are an ALC-concept C, ALC-KBK =T, and X C sig(C,K)
such that C' is implicitly definable from X under IC and the smallest explicit definition
of C is exponential in |C| + |K|.

We now formally define the notions we discussed in the introduction. However, unlike
Baader and Nutt [1], we consider general TBoxes instead of terminologies. In general
TBoxes, it is not clear from the syntactic shape of the TBox which predicate is prim-
itive and which is defined. Therefore, we assume that primitive predicates, i.e., X/, are
specified beforehand. This is similar to the approach by Ten Cate et al. [5].
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Definition 7. Let T be a TBox and let X C sig(7T). T is X-definitorial if and only if
for every interpretation I that interprets only the predicates in X there is at most one
interpretation J such that AT = AT, PT = P7 for every predicate P € X, and J is
a model of T.

It is not hard to see the connection between definitoriality and implicit definability.

Theorem 3. Let 7 be a TBox and let X C sig(T). T is X-definitorial if and only if
every concept name A € sig(7T) \ X is implicitly definable from X under T .

We are interested in rewriting general TBoxes to X'-acyclic ones. It is clear from the def-
inition of Y'-acyclic TBoxes that they may contain general concept inclusions involving
only predicates from Y. This restriction is needed because unlike in [1] we may be
given a TBox that is not a terminology. A Y-acyclic TBox is also X'-definitorial, but
the converse may not always be true. DLs possessing this property are called definito-
rially complete.

Definition 8. A description logic £ is called definitorially complete if each X.-defini-
torial £-TBox T is equivalent to a X -acyclic £-TBox T'.

Baader and Nutt show that ALC is definitorially complete [1]. Ten Cate et al. give
a concrete algorithm for computing acyclic TBoxes from definitorial ones in ALC [5].
The algorithm is based on a special normal form for concepts and uniform interpolation.
This involves at most a triple exponential blowup. Here we take a more direct approach
using interpolation and improve this upper bound to a single exponential one, which is
the main result of this section.

Theorem 4. Let T be an ALC-TBox and let X C sig(T). If T is X-definitorial, then
there exists an equivalent X -acyclic ALC-TBox T*, which is at most exponential in the
size of T.

Proof. Let T be a X-definitorial ALC-TBox. By Theorem 3 and Theorem 1, for every
A € (sig(T) \ X)), there is some concept C'4 such that 7 |= A = Cy, sig(Ca) C X,
and |Cy4| is at most exponential in |A| + |7 |. However, since A € sig(7), we can
conclude that |C'4] is at most exponential only in |7 |.

Let 7* be the TBox obtained from 7 by systematically replacing each occurrence
of all A by C4, and adding the relevant concept definitions A = Cy4. Then 7* is
XY-acyclic and equivalent to 7. Finally, the length of 7* is easily seen to be at most
exponential in the length of 7. O

4 Optimally Constructing Interpolants

In this section, we give a constructive proof of Lemma 1. In other words, we present
a method for constructing an interpolant using a tableau proof. We have presented a
constructive method in [6]. However, the algorithm there is based on standard ALC
tableau techniques, which do not guarantee termination in EXPTIME, and are not worst-
case optimal, since checking satisfiability in ALC is known to be in EXPTIME. Here
we aim at obtaining exponential size interpolants by using a worst-case optimal tableau
algorithm in the style of Goré and Nyugen [8].
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The R rule

Condition: {C*,(=C)"} C g.content.

Action: g.status := unsat.

The Rr rule

Condition: (C1 M C2)* € g.content, {C},C3} € g.content.

Action: g'.content := g.content U {C?, C3'};

The Ry, rule

Condition: (C1 U C)* € g.content, {C7,C3} N g.content = §).

Action: g'.content := g.content U {C7'};
g" .content := g.content U {C3'};

The R3 rule

Condition: {(BR:.C1)™M,...,(3R,.C)**} C g.content;
(3R.C)* € g.content implies 3i € {1,...,n} s.t. (GR.C)* = (3R,;.C;).

Action: gi.content := {C}} U {D* | (VR.D)* € g.content and R; = R},
gi-content := g;.content U{F' | TC E€ TIJU{E" | TC F €T}
forl <i<n.

Fig. 1. Tableau expansion rules for ALC.

4.1 An Optimal Tableau Algorithm for Satisfiability

We start by presenting a tableau algorithm for deciding concept subsumption. To this
aim, we fix two ALC-concepts C' and D, and an ALC-TBox 7 with the labelling
(T1,7y). A biased tableau (tableau for short) for (C, D, 7;,7,) is a directed graph
(V, E), where V is the set of nodes and £ C V x V is the set of edges.

In the following, we will be using biased concepts which are expressions of the
form C*, where C' is an ALC-concept and A € {l,r} is a bias. Let cll := {E' | E €
cd(C, 7))} and clr := {E" | E € cl(=D,7;)}. We associate four different labels to
nodes in V: content : V — 2°1U¢r type . V' — {and-node,or-node}, status :
V — {sat,unsat}, and availability : V — {expanded,unexpanded}. The
function of these labels are explained when they are used.

The tableau expansion rules given in Figure 1 expand a tableau by making use of the
semantics of concepts, and thus make implicit information explicit. We assume that a
rule can be applied to a node g if g.availability = unexpanded and if a rule is applied
to g then g.availability := expanded without writing it explicitly in rule definitions.
In order to guarantee a finite expansion, we use proxies in the following way. Whenever
a rule creates a new node ¢’ from g, before attaching the edge (g, ¢’) to £, the tableau
is searched for a node ¢’ € V such that g’.content = ¢g”’.content. If such a ¢" is found
then the edge (g, ¢"’) is added to £ and ¢’ is discarded.

We are interested in deciding 7 = C' T D. The tableau algorithm starts with the
initial tableau T = ({go},0) for (C, D, Ty, T;), where gg.content = {C', (~D)*} U
{E'| TCEe€e T} U{E"| T C E € 7.} and go.availability = unexpanded.
T is then expanded by repeatedly applying the tableau expansion rules in such a way
that if more than one rule is applicable at the same time then the first applicable rule in
the list [R, Rm, Ry, R3] is chosen. The expansion continues until none of the rules is
applicable to T. Such a tableau is called complete.
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Let T be a complete tableau for (C, D, 7y, 7,.). The type of a node g is determined
as follows: g.type = or—node if R, has been applied to g, and g.type = and—-node
otherwise. Until it is no more possible to assign a status to a node in V, we run the
following algorithm.

Pickanode g € V.
If ¢ is a sink node! with g.status # unsat then g.status := sat.
If g.type = and-node and
e all ¢g’s direct successors have status sat then g.status := sat;
e one of g’s direct successors has status unsat then g.status := unsat.
If g.type = or-node and
e all g’s direct successors have status unsat then g.status := unsat;
e one of g’s direct successors has status sat then g.status := sat.

If gg.status is still undefined then for every ¢ € V with g.status # unsat, set
g.status := sat.

A complete tableau for (C, D, 7y, 7;) is closed if gy has status unsat and it is
open, otherwise. If the tableau algorithm constructs an open tableau for (C, D, 7, 7.)
then it returns “7 & C' C D”, and “7 = C C D” otherwise.

Termination is a consequence of using proxies and cll U clr being finite. In the worst
case, there are 2€(#(1U<) nodes in a complete tableau T. Checking for proxies and
determining the status of gg both take polynomial number of steps in the size of T'. As it
is apparent, we use a refutation proof for 7 |= C' C D, i.e., we check the unsatisfiability
of C'M 4D w.r.t. 7. For soundness, given a model Z of 7 such that (C'11 ~D)% # (),
we can guide the tableau algorithm to construct an open tableau for (C, D, Ty, 7) by
making use of the information in Z. As for completeness, we can construct a model Z
of 7 such that (C M -D)? # () from an open tableau for (C, D, 71, 7). Combining all
these, we get the following theorem.

Theorem 5 ([8]). Let C, D be ALC-concepts and T be an ALC-TBox. The tableau
algorithm decides T |= C T D in time exponential in |C| + |D| + |T|.

4.2 An Algorithm for Calculating Interpolants

As is clear from the definition of the tableau expansion rules, we use some additional
bookkeeping (compared with the algorithm of [8]) for calculating interpolants. In par-
ticular, it is necessary to identify from which TBox (7] or 7;) or concept (C or D) a
concept in the content of a node is derived. After we have that information, we can
extract an interpolant from a closed tableau.

The interpolant calculation rules are presented in Figure 2. Given a closed tableau T
for (C, D, 71, 7y), the interpolant calculation algorithm starts by calculating a concept
int(g) for every sink node g in T with g.status = unsat? using C, . While gq is not
assigned a concept int(go), it repeatedly applies the following steps.

1. Pick a node g such that int(g) is undefined and g.status = unsat.
1

a node with no outgoing edges
% Note that a node g in T with g.status = unsat is a sink if and only if R is applied to g.
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The C_ rule The Cy, rule

int(g) == Lif A=r=1 int(g) := int(¢’) Uint(g"),if A\ =1;
int(g) :=C,if A\=landk =r; [int(g) :=int(¢g') Nint(g"),if A =r.
int(g) :=T,if \ =k =r;

int(g) :=~C,if \=randk = 1.
The Cr, rule The C3 rule

int(g) := int(g"). int(g) := 3R;.int(g;), if \s =1

int(g) := VR;.int(g;), if \; = r forsome ¢ € {1,...,n}.

Fig. 2. Interpolant calculation rules for ALC.

2. If g.type = and-node, and g has a direct successor ¢’ (g; forsome i € {1,...,n})
with int(g’) (resp. int(g;)) defined then apply Cr (resp. C3) .

3. If g.type = or—node, and for all direct successors ¢’, g” of g we have that int(g’)
and int(g") defined then apply Cy,.

This algorithm terminates in time polynomial in the size of T because all sink nodes
with status unsat are reachable from gg, and it is guaranteed to have nodes satisfy-
ing conditions 2 and 3 by the virtue of gg.status = unsat. The correctness of the
algorithm is shown in two steps: first we show that our interpolant calculation rules
are sound, i.e., they compute interpolants; second we show completeness, i.e., that we
always find an interpolant. The proofs of these theorems are very similar to the corre-
sponding ones we presented in [6]. Lemma 1 now follows straightforwardly from the
termination and correctness of the interpolant calculation algorithm, and Theorem 5.

5 Beth Definability in Extensions of ALC

In this section, we present a polynomial reduction from SHZ KB satisfiability to ALC
KB satisfiability. This reduction allows us to prove Beth definability and definitorial
completeness properties for any extension of ALC with constructors from {S,H,Z}.
Ten Cate et al. [5] showed that these logics are definitorially complete but because of
their model theoretic argument, they provide no information on the size of the resulting
TBoxes. In this section, we establish a tight upper bound for explicit definitions in these
logics.

We will proceed in three steps: first reduce SHZ-concept satisfiability w.r.t. a KB
to the same problem in ALCHZ, then ALCHZ to ALCZ, and finally ALCZ to ALC.
All these reductions use the axiom schema instantiation technique [9] which is based on
the idea of removing the constructor at hand by instantiating its corresponding (modal)
axiom schema [10] for each concept in cl or a relevant concept closure, and adding
these instances to the TBox to obtain an equi-satisfiable KB. The first and third of these
reductions are given in [11] and [12], respectively. To the best of our knowledge, the
second one has not beed used before.

Definition 9. Ler Cy be a SHZ-concept and K = (T,H) be an SHI-KB. Then
75(Co, K) is defined as the ACCHZ KB (T UT', H'), where
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- T'={VR.CLCVSVS.C |VR.C € cl(Cy,K), S Cy; Rand Trans(R) € H}.
— M’ is obtained from H by removing all transitivity axioms.

Theorem 6 ([11]). A SHZ-concept Cy is satisfiable w.r.t. a SHZ-KB K = (T, H) if
and only if Cy is satisfiable w.r.t. the ALCHZ-KB 75(Cy, K).

Definition 10. Let Cy be an ALCHI-concept and let K = (T, H) be an ALCHZI-KB.
Then 11¢(Cy, K) is defined as the ALCZ-KB (T UT', (), where T' = {VS.C CVR.C |
VS.C € cl(Co, K), R ot S, and R # S).

Theorem 7. An ALCHZ-concept Cy is satisfiable w.r.t. an ALCCHZ-KB K = (T, H)
if and only if Cy is satisfiable w.r.t. the ALCZ KB 11(Cy, K).

Dealing with inverse roles is a bit more intricate because the signature of the original KB
needs to be changed. Let the ALC-concept ((C) be like the ALCZ-concept C' except
that every occurrence of each inverse role R~ in C' is replaced with a new role name
R¢; the renaming transformation ((-) extends to TBoxes in the natural way. Moreover,
let +(-) be the inverse of ((-), i.e., t({(C)) = C.

Definition 11. Let Cy be an ALCZ-concept and let T be an ALCI-TBox. Then m7(Co, T )
is defined as the ALC-TBox T; U 15, where:

I T = ((T).
2. Ty is the set of all concept inclusion axioms of the forms C C (VR.AR°.C') and C C
(VR®.3R.C) such that C'is in c|({(Cy), T1) and R is a role name in rol(Cy, T ).

Theorem 8 ([12]). An ALCZ-concept Cy is satisfiable w.r.t. an ALCZ-TBox T if and
only if the ALC-concept ((Cy) is satisfiable w.r.t. the ALC-TBox t7(Co,T).

The following theorem follows directly from Theorems 6, 7, and 8.

Theorem 9. A SHZ-concept Cy is satisfiable w.r.t. a SHZ-KB K = (T, H) if and only
ifthe ALC-concept ((Cy) is satisfiable w.r.t. the ALC-KB 77(Cy, 7 (Co, 75 (Co, (T, H)))).

Except for the last one, all the reductions presented in this section preserve the signature
of the given KB. Therefore, an explicit definition in the less expressive logic is also an
explicit definition in the more expressive one. As for the last reduction, it is possible
to reconstruct an explicit definition in ALCZ from the one in ALC by replacing role
names corresponding to inverse roles, as demonstrated by the following theorem.

Theorem 10. Let X C {S,H,Z} and let K = (T, H) be an ALCX-KB. If an ALCX -
concept C' is implicitly definable from X C sig(C, K) under K then C' is explicitly
definable from X under IC, and the size of the explicit definition of C from X under K
is at most exponential in |T |+ |H| + |C| .

Proof. Let K be a SHZ-KB and let C and D be SHZ-concepts. Furthermore, let
Ky = (mz(E, mn(E,7s(E,(T,H))))), where E = (C 1 —=D) U (DM -C). We have
the following chain of equivalences: (1) K = C = D < F is unsatisfiable w.r.t. K
& [Theorem 91 (1) js unsatisfiable w.r.t. K, < K, = ((C) = (D).
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Let £ = (7,H) be an ALCX-KB and let C be an ALCX -concept such that C' is
implicitly definable from X under K. Then K U K = C = C. Every ALCX -concept
and every ALCX-KB is trivially a SHZ-concept and a SHZ-KB, respectively, and

therefore, by (), we have that 1, U I/C: E¢(C) = @ , where ~is exactly like ~ except
that X is substituted by X, = YU{R° | R° € rol(¢(C),K,) and R € X'}. {(C) and K,
are an ALC-concept and ALC-KB, respectively. By Theorem 1 we have that there is an
explicit definition D of {(C) from X, under K, the size of which is at most exponential
in |7z(C, 74 (C,7s(C, (T, H))))| + |¢(C)|. In other words, K, = ((C) = D and the
size of D is at most exponential in |7 |+ |H|+|C|. By (1), K = C = «(D), where +(D)
is an ALCX -concept. But by Definition 4, +(D) is an explicit definition of C' from X
under K. O

6 Conclusion

In this paper, we revisited the problem of definitorial completeness, i.e., whether a given
general TBox 7 in a DL & can be rewritten to an acyclic TBox 77 in .£. ALC and
every ALCX for X C {S,H,Z} were already known to be definitorially complete [5].
Our main contribution in this paper was to establish a tight exponential bound on the
size of the resulting acyclic TBoxes.

Our results show that concept definitions can be written exponentially more suc-
cinctly in general TBoxes than in acyclic TBoxes for the logics we considered. There-
fore, general concept inclusions may help increase the readability of a TBox/ontology.
However, general concept inclusions introduce a lot of non-determinism to reasoning
algorithms. If a general TBox is used for concept definitions and our DL is definitori-
ally complete then this is not much of a restriction since an equivalent acyclic TBox
can be obtained. This suggests the use of the general TBox for user friendliness and a
precomputed acyclic counterpart for reasoning.

Definitorial completeness is a fragile property and not every DL enjoys it. For ex-
ample, ALCO does not have this property and requires the @-operator from hybrid
logics to become definitorially complete [5]. It is worthwhile to note that the algorithm
for computing acyclic TBoxes is based on tableau, and thus it is suitable for optimised
implementations. We leave as an open problem whether a tight upper bound for SHZ Q
can be obtained in a similar way.
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1 Introduction

The Web Ontology Language (OWL) [1] is an expressive ontology language
based on Description Logics (DL)!. The semantics of OWL addresses distributed
knowledge representation scenarios where complete knowledge about the domain
cannot be assumed. Further, the semantics has the following characteristics:

— Open World Assumption (OWA): i.e., a statement cannot be inferred to be
false on the basis of failures to prove it.

— Absence of the Unique Name Assumption (UNA): i.e., two different names
may refer to the same object.

However, these characteristics can make it difficult to use OWL for data val-
idation purposes in real-world applications where complete knowledge can be
assumed for some or all parts of the domain.

Example 1 Suppose we have the following inventory KB IKC. One might add the
following aziom « to express the constraint “a product is produced by a producer”.
K = {Product(p)}, «:Product C JhasProducer.Producer

In this example, due to the OWA, not having a known producer for p does not
cause a logical inconsistency. Therefore, we cannot use « to detect (or prevent)
that a product is added to the KB without the producer information.

Example 2 Suppose we have the following inventory KB IKC. One might add the
following aziom « to express the constraint “a product has at most one producer”.
K = {Product(p), hasProducer(p, m; ), hasProducer(p, ma)},
o« : Product C < lhasProducer. T

Since m; and mq are not explicitly defined to be different from each other, they
will be inferred to be same due to the cardinality restriction. However, in many
cases, the reason to use functional properties is not to draw this inference, but to
detect an inconsistency. When the information about instances are coming from
multiple sources we cannot always assume explicit inequalities will be present.
In these scenarios, there is a strong need to use OWL as an Integrity Con-
straint (IC) language with closed world semantics. That is, we would like to adopt
the OWA without the UNA for parts of the domain where we have incomplete

! Throughout the paper we use the terms OWL and DL interchangeably.
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knowledge, and the Closed World Assumption (CWA)? with UNA otherwise.
This calls for the ability to combine the open world reasoning of OWL with
closed world constraint validation.

In this paper, we describe an alternative IC semantics for OWL, which en-
ables developers to augment OWL ontologies with IC axioms. Standard OWL
axioms in the ontologies are used to compute inferences with open world seman-
tics and ICs are used to validate instance data using closed world semantics.
Our goal is to enable OWL as an IC language, especially in settings where OWL
KBs are integrated with relational databases and ICs are needed to enforce the
named individuals to have some known values. We show that IC validation can
be reduced to query answering when the KB expressivity is SRZ or the con-
straint expressivity is SROZ. The queries generated from ICs can be expressed
in the SPARQL query language allowing existing OWL reasoners to be used for
IC validation easily.

2 IC Use Cases

There are several common use cases for closed world constraint checking that
have been identified in the relational and deductive databases literature [2, Chap.
11]. We prepared a user survey to gather use cases and requirements for ICs from
the OWL community. These use cases are similar to what we consider to be the
canonical IC use cases and can be summarized as follows:

Typing constraints Typing constraints require that individuals that par-
ticipate in a relation should be instances of certain types. For example, closed
world interpretation of domain and range axioms in OWL would fit into this
category. Given the following ICs

JhasProducer.T C Product, T C VhasProducer.Producer
The following role assertion

hasProducer(productl, producerl)
would violate these ICs since product1 and producerl are not explicitly known
to be instances of Product and Producer respectively. The data would be valid
with the addition of the following assertions:

Product(productl), Producer(producerl).

Domain and range axioms can be seen as global typing constraints; that is they
affect instances of every class that participates in a property assertion. OWL
also allows finer-grained typing constraints using universal restrictions.

Participation constraints Participation constraints require that instances
of the constrained class should have a role assertion. Given an IC semantics, the
existential restrictions in OWL can be used for this purpose. For instance, in
Example 1, « is a participation constraint. With IC semantics, we expect K to
be invalid w.r.t. this constraint since the producer of p is not known. C would
be valid only when additional axioms in the following form are added:

hasProducer(p, producer), Producer(producer).

2 With CWA, a statement is inferred to be false if it is not known to be true, which
is the opposite of OWA.
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Uniqueness constraints Uniqueness constraints require that an individual
cannot participate in multiple role assertions with the same role. The keys in re-
lational databases enforce such constraints. A similar restriction can be expressed
in OWL with a FunctionalProperty declaration. For instance, in Example 2, o
is an uniqueness constraint. With IC semantics, K is invalid w.r.t. this constraint
since p has two producers m1 and m2 which are not known to be same. K would
be valid after adding the assertion ml = m2.

3 Related Work

The research on integrating ICs with OWL has been conducted in multiple
directions. One approach to achieve this combination is to couple OWL with
rule-based formalisms and express ICs as rules without heads as in [3,4]. For
example, according to the proposal in [3], the constraint axiom « in Example 1
is expressed with rules as follows:

1 « DL[Product](z),not P(z,y)

P(z,y) < DLJhasProducer](z,y), DL[Producer]|(y)
where atoms with prefix DL are DL atoms which are evaluated as queries to the
OWL KB, not is the Negation As Failure (NAF) operator 2, and L is a special
predicate representing the empty rule head. The addition of constraints (rules)
to a DL KB constitutes a hybird KB, and the detection of a constraint violation
is reduced to checking if the special predicate L is entailed by the hybrid KB.
With this approach, ontology developers have to deal with one more additional
formalism, i.e., rules, besides the ontology language OWL to model the domain.

ICs can also be expressed with the epistemic query language EQL-Lite [5]
where EQL-Lite allows one to pose epistemic FOL queries that contain the
K operator used against standard FOL KBs. Since every OWL axiom can be
represented as an FOL formula we can translate the constraint axiom in Example
1 to the following EQL-Lite query:

KProduct(z) — Jy.(KhasProducer(z,y) A KProducer(y))
where the answers of this query return the individuals in the KB that satisfy the
constraint, and the answers of the negated query will return the individuals that
violate the IC. Although the data complexity of answering domain independent
EQL-Lite queries in DL-Lite is LOGSPACE, it would require substantially more
effort to support EQL-Lite in DL KBs with full expressivity and the complexity
results are still unknown.

Another line of approach is based on the epistemic extension of DLs [6,7]
where modal operators K and A can be used in concept and role expressions of
the given DL KB. Intuitively, ICC represents the set of individuals that are known
to be instances of C' and R represents the pair of individuals that are known to
be related with the role R. Operator A is interpreted in terms of autoepistemic
assumptions. Then the ICs are represented as epistemic DL axioms, and the
satisfaction of ICs is defined as the entailment of the epistemic IC axioms by the

3 NAF is widely used in logic programming systems. With NAF, axioms that cannot
be proven to be true are assumed to be false
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standard DL KB. For example, the constraint « in Example 1 can be translated
into the following epistemic DL axiom:

KProduct C JKhasProducer.KProducer.

One important feature of [6, 7] is that all interpretation domains are same,
and an individual name always refers to the same object in every interpretation.
Due to this feature, strict UNA is enforced. That is, two different names always
denote different resources. However, this is not compatible with OWL since it
is possible that standard OWL axioms infer that two different names identify
the same individual. While existing research has focused on epistemic extensions
for relatively inexpressive ALC there has not been much research for combining
epistemic logics with more expressive DLs.

Besides the above work, there are some other proposals concerning on in-
tegration of ICs with OWL. In this paper, we focus on approaches that reuse
OWL as an IC language. Our closest related work is a proposal by Motik et al.
[8] based on a minimal Herbrand model semantics of OWL: here, a constraint
axiom is satisfied if all minimal Herbrand models satisfy it. This approach may
result in counterintuitive results or a significant modeling burden in the following
cases.

First, unnamed individuals can satisfy constraints, which is not desirable for
closed world data validation.

Example 3 Consider the KB K that contains a product instance and its un-
known producer, and the constraint o that every product has a known producer:
K = {Product(p), FhasProducer.Producer(p)}
« : Product C JhasProducer.Producer

Since p has a producer in every minimal Herbrand model of K, « is satisfied,
even though the producer is unknown.

Second, if a constraint needs to be satisfied only by named individuals, then
a special concept O has to be added into the original IC axiom, and every named
individual should be asserted as an instance of O. This adds a significant main-
tenance burden on ontology developers, but still doesn’t capture the intuition
behind the constraint;

Example 4 Suppose we have a KB K where there are two possible producers
for a product and a constraint a:
K = {Product(p), (GhasProducer.{m1, ma})(p), O(p),
Producer(m;),Producer(ms), O(my),O(ms)}
« : Product C JhasProducer.(Producer 1 0)

The intuition behind constraint « is that the producer of every product
should be known. Even though we do not know the producer of p is m; or mo
for sure, « is still satisfied by the semantics of [8] because in every minimal
Herbrand model p has a producer that is also an instance of Producer and O.

Third, the disjunctions and ICs may also interact in unexpected ways.

Example 5 Consider the following KB K where there are two categories for
products and a constraint o defined on one of the categories:
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K = {Product C Categoryl LI Category2, Product(p)}
o : Categoryl C JcategoryType. T

Since we do not know for sure that p belongs to Category1, it is reasonable
to assume that the constraint a will not apply to p and a will not be violated.
However, with [8] semantics, « is violated because there is a minimal model
where p belongs to Categoryl but it does not have a categoryType value.

In this paper, we present a new IC semantics for OWL that overcomes the
above issues and enables efficient 1C validation for OWL.

4 Preliminaries

4.1 Description Logics SROZIQ

In this section, we give a brief description about the syntax and semantics of the
Description Logic SROZQ [9], which is the logical underpinning of OWL 2 [10].
More details can be found in [9].

Let N¢, Ngr, Ny be non-empty and pair-wise disjoint sets of atomic con-
cepts, atomic roles and mamed individuals respectively. The SROZQ role R
is an atomic role or its inverse R~. Concepts are defined inductively as follows:

C—A|-C|CiNCy|>nRC| 3RS | {a}

where A € N¢, a € Ny, C(;y a concept, R a role.

We use the following standard abbreviations for concept descriptions: 1 =
cCn-C, T=-1,CUD=~-(-CnN-D),<nR.C=-(>n+1R.C),3R.C =
(>1R.C),YVR.C = ~(3R.-C), {a1,...,an} ={ar} U---U{an}.

A SROTIQ-interpretation T = (A, -T), where A is the domain, and . is the
interpretation function which maps A € N¢ to a subset of A, R € Ng to a
subset of A x A, a € Ny to an element of A. The interpretation can be extended
to inverse roles and complex concepts as follows:

(R7)* = {{y,2) | (z,y) € R*},(=C)* = A\ C*,(CN D)F = CT nD*,
(>nR.C)F = {z | #{y.(z,y) € R and y € CT} > n}
(3R.Self)? = {z | (x,z) € R*}, {a}* = {a*}.

where # denotes the cardinality of a set.

A SROIQ knowledge base K is a collection of SROZQ axioms, including
TBox, RBox, and ABox axioms. A SROZ Q-interpretation Z satisfies an axiom
a, denoted Z = «, if CT C DT (RECRZ, Rfo...oRZC RT Vo€ A: (x,2) €
RT Yz e A: (z,z) ¢ RT, R¥ N R = () resp.) holds when a=C C D (R; C Ry,
Ry...R, C R, Ref(R), Irr(R), Dis(Ry, R2) resp.). Note that, there are also
four kinds of ABox axioms (C(a), R(a,b), a = b, a # b). Their semantics is
given by encoding them as TBox axioms ({a} C C, {a} C 3R.{b}, {a} C {b},
{a} C —{b}, resp.). T is a model of K if it satisfies all the axioms in IC. We
define Mod(K) to be the set of all interpretations that are models of K. We say
K entails «, written as K |= «, if 7 |E « for all models Z € Mod(K).
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4.2 Distinguished Conjunctive Queries (DCQs)

We now describe the syntax and semantics of distinguished conjunctive queries
(DCQs). Let Ny be a non-empty set of variable names disjoint from Ny, N¢,
and Ngr. A query atom is an ABox axiom where variables can be used in place
of individuals. Formally, it is defined as follows:

g C(z) | R(z,y) | ~R(z,y) |z =y |x#y

where x,y € NfUNy, C is a concept, and R is a role. A conjunctive query (CQ)
is the conjunction of query atoms:

Q—q|QiNQ2

A DCQ is a CQ containing only distinguished variables.*

The semantics of DCQs are given in terms of interpretations defined in Sec-
tion 4.1. We define an assignment o : Ny — Ny to be a mapping from the
variables used in the query to named individuals in the KB. We define o(Q) to
denote the application of an assignment o to a query @ such that the variables
in the query are replaced with individuals according to the mapping. We say a
KB K entails a DCQ @ with an assignment o, written as £ =7 @, if:

KE’?q iff K= o(q)
KET Q1 AQ2 iff KE7 Qi and K 7 Q2

We define the answers to a query, A(Q,K), to be the set of all assignments
for which the KB entails the query. That is, A(Q,K) = {o | K E7 Q}. We say
that a query is true w.r.t. a KB, denoted K |= @Q, if there is at least one answer
for the query, and false otherwise.

5 IC Semantics for OWL

There has been a significant amount of research to define the semantics of ICs
for relational databases, deductive databases, and knowledge representation sys-
tems in general. There are several proposals based on KB consistency or KB
entailment. Against both of these approaches, Reiter argued that ICs are epis-
temic in nature and are about “what the knowledge base knows” in [11]. He
proposed that ICs should be epistemic first-order queries that will be asked to
a standard KB that does not contain epistemic axioms.

We agree with Reiter about the epistemic nature of ICs and believe this is
the most appropriate semantics for ICs. In the following section, we describe an
alternative IC semantics for OWL axioms, which is similar to how the semantics
of epistemic DL ALCK [6] and MKNF DL ALCKxr# [7] are defined. Then, in
Section 5.2, we discuss how the IC semantics addresses the issues explained in
Section 1 and Section 3, and enables OWL to be an IC language.

4 A distinguished variable can be mapped to only known individuals, i.e., an element
from Ny



Jiao Tao, Evren Sirin, Jie Bao and Deborah McGuinness. 143

5.1 Formalization

We define IC-interpretation as a pair Z,U where 7 is a SROZIQ interpretation
defined over the domain AZ and U is a set of SROIQ interpretations. The IC-
interpretation function .Z¥ maps concepts to a subset of A, roles to a subset of
A x A and individuals to an element of A as follows:

CtHY ={z' |z € Ny st. VT eU,27 € C7}
RMM = (@, y") | v,y € Nr sit. VT €U, (27 ,y7) € R}

where C' is an atomic concept and R is a role. According to this definition,

CTU ig the interpretation of named individuals that are instances of C' in every

(conventional) interpretation from ¢. RTY can be understood similarly.
IC-interpretation is extended to inverse roles and complex concepts as follows:

RO)P = {(z",y") | (v, aT) € R*Y,
cn D)I,L{ _ CI,Z/{ n DI’Z/{, (ﬂC)I’M _ NI \ CI’M,
>nR.C)"M = {a” |z € Ny st. #{y" | (27,y") € RPY,y" € CPY} > n},

(
(
(
(EIR.Self)I’“ = {xz | z € Ny s.t. <xI,xI> € RI’“}, {a}I’M = {aI}.

We can see that the IC-interpretation Z,U is using the closed-world assump-
tion. For example, the elements of CTY are the interpretation of named indi-
viduals that should be in the interpretation set of CZ for all Z € Y. Any named
individual that can not be proven to be an instance of C' is assumed to be an
instance of —C' since (~C)Z# is the complement of CTH w.r.t. N;.

Note that, although the IC interpretations have some similarities to the epis-
temic interpretations of ALCK and ALCKrx [6,7], there are some important
differences. First, the IC interpretation in our approach is applicable to any
SROZIQ DL KB while the expressivity of DLs in [6, 7] is limited to ALC. Sec-
ond, in ALCK and ALCKx [6,7], strict UNA is used by the interpretations
which is not the case in IC interpretations.

In our IC semantics, we want to adopt a weak form of UNA; that is, two
named individuals with different identifiers are assumed to be different by default
unless their equality is required to satisfy the axioms in the KB. This idea
is similar to minimal model semantics where equality relation is treated as a
congruence relation and minimized.

We formalize this notion of weak UNA by defining Minimal Equality (ME)
models. We start by defining the <_ relation. Given two models Z and 7, we
say J <= Z if all of the following conditions hold:

— For every concept C, J = C(a) implies Z | C(a);
— For every role R, J = R(a,b) implies T = R(a, b);
— EJ Cc BEr

where E7 is the set of equality relations between named individuals (equality
relations, for short) satisfied by Z:

Er ={{a,b) | a,be Ny st. T = a=b}
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Modprg(K) is the models of K with minimal equality (ME) between named
individuals. Formally, we define

Modyp(K) ={Z € Mod(K) | 37,J € Mod(K),J <= T}

It is easy to see that for every ME model Z in Modpsg(K), there is no model
J of K where E; C Ez. Two different named individuals are interpreted as
equivalent in Z € Mody g (K) only if this equality is necessary to make Z being
a model of K. For example, suppose we have the axiom a = {b} LI{c} in K. Then,
VI € Mod(K), one of the following three conditions hold: (1) aZ = bZ%,a? # ¢7;
(2) a? =, a? #b%; (3) af = b? = . If (1) or (2) holds, then Z € Modyg(K)
because a has to be interpreted to be equivalent to at least one of b and ¢ to
make Z being a model of K. Whereas for case (3), Z ¢ Modpg(K) since the
equality relations in Z are not minimal.

An IC-interpretation Z,U satisfies an axiom «, denoted as Z,U = «, if
CTM C DTU (RTY C RyY, Ry C Ry, RTY C RYY Vo € Ny : (2TH 27U €
RTU Nz e Ny : (xZU Ty ¢ RTU RIM 0 RIM — ) resp.) holds when
a=CCED (R E Rs, Ry...R, C R, Ref(R), Irr(R), Dis(Ry, Ry) resp.).

Given a SROZQ KB K and a SROZQ constraint «, the IC-satisfaction of
a by K, ie., K Erc a, is defined as:

KEicaiff VI e, T,U = o, where U = Modpg(K)

We define an extended KB as a pair (KC,C) where K is a SROZQ KB as
before and C is a set of SROZQ axioms interpreted with IC semantics. We say
that (IC,C) is valid if Va € C, K [=1¢ «, otherwise there is an IC violation.

5.2 Discussion

It is easy to verify that the IC semantics provides expected results for the exam-
ples presented in Section 1 and Section 3. For instance, we get an IC violation
in Example 1 since the IC interpretation of Product contains p but the IC in-
terpretation of (FhasProducer.Producer) is empty.

The following example shows how weak UNA allows the individuals that are
not asserted to be equal to be treated different for constraint validation purposes.

Example 6 Consider the KB K and the constraint a:
K ={C(c), R(¢,d1), R(c,d2),D(d1),D(d2)}, «:CE>2R.D

With the weak UNA, d; and ds are interpreted to be different in every ME model.
Therefore, the IC-interpretation of (> 2R.D) includes ¢, and « is satisfied by K.
Now we illustrate another point regarding disjunctions in constraints.

Example 7 Suppose we have the KB K and constraint o:

K:{C(a),(01|_|02)(a)}, OleEOll_lCQ
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Constraint « should be read as “every instance of C' should be either a known
instance of C7 or a known instance of C5”. Since we do not know for sure
whether a belongs to C7 or Cy, « is expected to be violated by K. Indeed,
according to our semantics we get CTY = {aZ} and (Cy U Cy)*Y = (). Therefore
CTU g (Cy U Cy)™™ and we conclude there is an IC violation.

If we want to represent the alternative constraint: “every instance of C should
be an instance of Cy or C5”, we can define a new name C” in the KB to substitute
C1 U Cy, thus having the new KB K’ and constraint o/ as follows:

K' = {C(a),(C1 UCs)(a),C" = CL UCsY, o :CCC

There is no IC violation in this version because now the disjunction is interpreted
as standard OWL axioms. As these examples show, we can model the constraints
to express different disjunctions in a flexible way.

6 IC Validation

We have defined in Section 5.1 that, the extended KB (K,C) is valid if every
IC axiom in C is IC-satisfied by K. In this section, we describe how to do IC
validation, i.e., check IC-satisfaction by translating constraint axioms to queries
with the NAF operator not . We start by giving the formal semantics for not
in DCQs, then describe the translation rules from IC axioms to DCQ™°t and
finally provide a theorem showing that IC validation can be reduced to answering
DCQ®°* under certain conditions.

6.1 DCQvet

In Section 4.2 , we introduced standard DCQs. However, the expressivity of
standard DCQs is not enough to capture the closed world nature of IC semantics.
For this reason, we add the not operator to DCQs to get DCQ™* queries. The
syntax of DCQP°tis defined as follows:

Q< q|Q1NQ2|notQ

The semantics of not is defined as:

K =7 not Q iff B0’ st. K E” o(Q)
And we use the abbreviation Q1 V Q2 for not (not @1 A not Q2). We can see
KETQ1VQ: iff KE?Qior KE7 Q

6.2 Translation Rules: from ICs to DCQ®°t

We now present the translation rules from IC axioms to DCQ®°* queries. The
translation rules are similar in the spirit to the Lloyd-Topor transformation [12]
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but instead of rules we generate DCQ™t queries. The idea behind the translation
is to translate a constraint axiom into a query such that when the constraint is
violated the KB entails the query. In other words, whenever the answer to the
query is not empty, we can conclude that the constraint is violated.

The translation contains two operators: 7. for translating concepts and 7
for translating axioms. 7. is a function that takes a concept expression and a
variable as input and returns a DCQ™* query as the result:

C(C ) a(.’t)
T.(-C,z) := not 7.(C, x)
7;,(0 |_|027 ) . 72(0171‘)/\7;(0273;)
T.(>nR.Cx):= N\ (Rx,y:) AT(Cy:))  \  mot (y; = y))
1<i<n 1<i<j<n
T.(3R.Self, z) := R(z, )
7:({a},z) := (z = a)
where C, is an atomic concept, C;) is a concept, R is a role, a is an individual,

x is an input variable, and y(;) is a fresh variable.
7 is a function that maps a SROZQ axiom to a DCQ™®t query as follows:

T(C1 ECy) :=T.(C1,z) Anot T.(Ca, x)
T(R1 C Ry) := Ry(z,y) Anot Ry(z,y)
T(Ry...R,CR):=Ri(z,y1) N ... Ru(Yn—1,Yn) Anot R(x,yy,)

where C(;) is a concept, Ry;) is a role, x and y(;) is variable.

6.3 Reducing IC Validation to Answering DCQ"°*

In Theorem 1, we show that IC validation via query answering is sound and
complete when the expressivity of the extended KB is either (SRZ,SROZQ)
or (SROZQ,SROT). Note that, when the expressivity is (SROZQ, SROZQ),
we can not reduce IC validation to query answering in a straightforward way
due to the interaction between the disjunctive (in)equality axioms in K and the
cardinality constraints in C. We limit this interaction by either excluding nomi-
nals and cardinality restrictions in & thus prohibiting disjunctive (in)equality to
appear in K, or by prohibiting cardinality restrictions in C. Due to space limita-
tions we only present the main theorem here. The complete proofs are presented
in the technical report [13].

Theorem 1 Given an extended KB (K,C) with expressivity (SRZ,SROIQ)
((SROIQ,SROI) resp.), we have that K =r1c « iff K = T («) where a € C.
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7 Implementation

The emerging best practice query language for OWL ontologies is SPARQL
[14] which is known to have the same expressive power as nonrecursive Datalog
programs [15] and can express DCQ™°*t queries. Therefore, based on the results
from Section 6.3, we can reduce IC validation to SPARQL query answering if
the KB is SRZ or the ICs do not contain cardinality restrictions.

We have built a prototype IC validator® by extending the OWL 2 DL reasoner
Pellet®. The prototype reads ICs expressed as OWL axioms and translates each
IC first to a DCQ™°* query and then to a SPARQL query. The resulting query
is executed by the SPARQL engine in Pellet where a non-empty result indicates
a constraint violation. Since the translation algorithm is reasoner independent
this prototype can be used in conjunction with any OWL reasoner that supports
SPARQL query answering,.

We have used this proof-of-concept prototype to validate ICs with several
large ontologies such as the LUBM dataset.” For testing, we removed several
axioms from the LUBM ontology and declared them as ICs instead. The dataset
is logically consistent but turning axioms into ICs caused some violations to
be detected. Since each constraint is turned into a separate query there is no
dependence between the validation time of different constraints. We have not
performed extensive performance analysis for IC validation but as a simple com-
parison we looked at logical consistency checking time vs. IC validation time. For
LUBM(5), which has 100K individuals and 800K ABox axioms, logical consis-
tency checking was in average 10s whereas validating a single IC took in average
2s. The naive approach in our prototype to execute each query separately would
not scale well as the number of ICs increase. However, there are many improve-
ment possibilities ranging from combining similar queries into a single query to
running multiple queries in parallel.

8 Conclusions and Future Work

In this paper, we described how to provide an IC semantics for OWL axioms
that can be used for data validation purposes. Our IC semantics provide intuitive
results for various different use cases we examined. We presented translation
rules from IC axioms to DCQP°t queries, showing that IC validation can be
reduced to query answering when the KB expressivity is SRZ or constraint
expressivity is SROZ. Our preliminary results with a prototype IC validator
implementation show that existing OWL reasoners can be used for IC validation
efficiently with little effort. Using SPARQL queries for IC validation makes our
approach applicable to a wide range of reasoners. In the future, we will be looking
at the performance of IC validation in realistic datasets and will be exploring
the IC validation algorithms for the full expressivity of SROZ Q.

5 http://clarkparsia.com /pellet /oicv-0.1.2.zip
5 http://clarkparsia.com /pellet
7 http://swat.cse.lehigh.edu/projects/lubm/
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Abstract. We consider the complexity of answering conjunctive queries
in the description logic S, i.e., in ALC extended with transitive roles.
While a co-NEXPTIME lower bound was recently established in [5], the
best known upper bound was 2-ExXPTIME. In this paper, we concentrate
on the case where only a single transitive role (and no other role) is
present and establish a tight co-NEXPTIME upper bound.

1 Introduction

Formal ontologies have gained significant importance in the last decade and
play an increasing role in a growing number of application areas including the
semantic web, ontology-based information integration, and peer-to-peer data
management. As a result, ontology formalisms such as description logics (DLs)
are nowadays required to offer support for query answering that goes beyond
simple taxonomic questions and membership queries. In particular, conjunctive
queries (CQs) over instance data play a central role in many applications and
have consequently received considerable attention, cf. [11,6,9] and references
therein and below.

A main aim of recent research has been to identify the potential and limi-
tations of CQ answering in various DLs by mapping out the complexity land-
scape of this reasoning problem. When concerned with inexpressive DLs such
as DL-Lite and £L, one is typically interested in data complexity and efficient
implementations based on relational database systems [3, 8]. In expressive DLs,
the data complexity is almost always CONP-complete and it is more interesting
to study combined complexity. While 2-ExPTIME upper bounds for expressive
DLs of the ALC family are known since 1998 [4], lower bounds except EXPTIME-
hardness (which is trivially inherited from satisfiability) have long been elusive.
A first step was made in [7], where inverse roles were identified as a source of
complexity: CQ answering in plain ALC remains EXPTIME-complete, but goes
up to 2-EXPTIME-completeness in ALCZ. When further extending ALCZ to the
popular DL SHZ Q, CQ answering remains 2-EXPTIME-complete [6].

* This work was partially supported by the Austrian Science Fund (FWF) grant
P20840, the EC project OntoRule (IST-2009-231875) and the CONACYT grant
187697.
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Interestingly, inverse roles turn out not to be the only source of complexity
in SHZQ. In [5], we have shown that transitive roles, which play a central role in
many ontologies and are used to represent fundamental relations such as “part
of” [10], also increase the complexity of CQ answering. More specifically, CQ
answering is CO-NEXPTIME-hard in the DL S, which is ALC extended with
transitive roles and the basic logic of the SHZQ family, even with only a single
transitive role and no other roles (and when the TBox is empty). We have also
shown in [5] that if we further add role hierarchies and thus extend S to SH,
CQ answering even becomes 2-EXPTIME-complete.

However, the precise complexity of CQ answering in S has remained open
between cO-NExXPTIME and 2-EXPTIME. The only existing tight bound (also
from [5]) concerns tree-shaped ABoxes, for which CQ answering in S is only Ex-
PTIME-complete (which is remarkable because previously known lower bounds
for CQ answering in DLs did not rely on the ABox structure). In this paper,
we present ongoing work on CQ answering in § and show that, in the pres-
ence of only a single transitive role and no other role, CQ answering in S is
in CO-NEXPTIME, thus cO-NEXPTIME-complete. This result is interesting for
two reasons. First, CO-NEXPTIME is an unusual complexity class for CQ an-
swering in expressive DLs as all previous extensions of ALC have turned out
to be complete for a deterministic time complexity class; the only exception is
a CO-NEXPTIME result for ALCZ in [7] which is, however, entirely unsurpris-
ing because it concerns a syntactically and semantically restricted case (“rooted
CQ answering”) where a cO-NEXPTIME bound comes naturally. And second,
we believe that the presented upper bound can be extended to the general case
where an arbitrary number of roles is allowed, though at the expense of making
it considerably more technical.

As usual, we consider conjunctive query entailment instead of CQ answering,
i.e., we replace the search problem by its decision problem counterpart. We use
the following strategy to obtain a CO-NEXPTIME upper bound for CQ entail-
ment. First, we use a standard technique to show that CQ entailment over un-
restricted ABoxes can be reduced to entailment of UCQs (unions of conjunctive
queries) over ABoxes that contain only a single individual and no role assertions.
More precisely, we use a Turing reduction that requires an exponential number of
UCQ entailment checks, where each UCQ contains exponentially many disjuncts
in the worst case. Thus, it suffices to establish a co-NEXPTIME upper bound for
each of the required UCQ entailments. Second, we show that if one of the UCQ
entailments does not hold, then there is a tree-shaped counter-model with only
polynomially many types on each path. Third, we characterize counter-models
in terms of tree-interpretations that are annotated in a certain way with sub-
queries of the original CQ (so-called @-markings). Thus, we can decide UCQ-
(non)-entailment by deciding the existence of a @-marked tree-interpretation.
Fourth, we show that, additionally to the restriction on the number of types, it
suffices to consider Q)-marked tree-interpretations in which there are only poly-
nomially many different annotations on each path. Finally, we prove that the
existence of a @Q-marked tree-interpretation with the mentioned restrictions on
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the number of types and annotations can be checked by guessing an initial part
of the annotated tree-interpretation that has only polynomial depth and thus
exponential size, which gives the desired co-NEXPTIME bound.

2 Preliminaries

We briefly introduce the description logic S, conjunctive queries, and conjunctive
query entailment.

Knowledge Bases. We assume standard notation for the syntax and semantics
of § knowledge bases [6]. In particular, Nc and N; are countably infinite and
disjoint sets of concept names and individual names. For the purpose of this
paper, we consider a single transitive role, denoted throughout by r. Concepts
are defined inductively: (a) each A € N¢ is a concept, and (b) if C, D are concepts,
then CM D, =C, and 3r.C are concepts.! A TBox is a set of concept inclusions
C C D. An ABoz is a set of assertions C(a) and r(a,b). A knowledge base (KB)
is a pair K = (7, .A) consisting of a TBox 7 and an ABox .A. We use Z to denote
an interpretation, AZ for its domain, and CZ and rZ for the interpretation of
a concept C' and the role r, respectively. We denote by Ind(.A) the set of all
individual names in an ABox A.

Conjunctive Query Entailment. Let Ny be a countably infinite set of vari-
ables. A conjunctive query (CQ or query) over a KB K is a finite set of atoms
of the form A(x) or r(z,y), where z,y € Ny, and A is a concept name.? For a
CQ q over K, let Var(q) denote the variables occurring in q. A match for g in an
interpretation T is a mapping 7 : Var(q) — AT such that (i) n(z) € AT for each
A(z) €q, and (ii) (w(z),7(y)) €r? for each r(z,y) € g. We write Z = q if there
is a match for ¢ in Z. If Z = ¢ for every model Z of K, then K entails q, writ-
ten K = ¢. The query entailment problem is to decide, given K and ¢, whether
K = q. We sometimes also consider unions of conjunctive queries (UCQs), which
take the form (J, ¢;, where each g; is a conjunctive query. The notions Z = ¢ and
K | q are lifted from CQs to UCQs in the obvious way.

The directed graph G, associated with a query ¢ is defined as (V, E), where
V = Var(q) and E = {(z,y) |r(z,y) € q}. When deciding CQ entailment, we
assume without loss of generality that the input query ¢ (i.e., the graph G,) is
connected. For V' C Var(q), we use g1 to denote the restriction of ¢ to the set
of variables that are reachable in G, starting from some element in V. We call
qly1 a proper subquery of ¢ if it is connected, and use sub(q) to denote the set
of all proper subqueries of g. Obviously, ¢ € sub(q).

! Concepts of the form C'LU D and Vr.C' are viewed as abbreviations.
2 As usual, individuals in ¢ can be simulated, and queries with answer variables can
be reduced to the Boolean CQs considered here.
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3 Reduction to Unary ABoxes

The objective of this section is to reduce CQ entailment over arbitrary knowledge
bases to UCQ entailment over knowledge bases whose ABoxes contain only a
single concept assertion and no role assertions.

Let K = (7,.A) be a knowledge base and g a CQ for which we want to decide
whether K = ¢. We assume without loss of generality that 7 = {T C Cr}. The
announced reduction, which is similar to one used in [5], makes use of the fact
that if there is an interpretation Z of K with Z [~ ¢, then there is a forest-shaped
such model, i.e., a model that consists of an ABox part of unrestricted relational
structure and a tree-shaped part rooted at each ABox individual. To check for
the existence of a countermodel of this form, we consider all ways in which the
query variables can be distributed among the different parts of the model. The
query has no match if for each possible distribution, we can select an ABox
individual a such that some subquery assigned to the tree model below a is not
matched in that tree model. This leaves us with the problem of determining
the existence of certain tree models (one for each ABox individual) that spoil a
(worst-case exponential) set of subqueries.

To formally implement this idea, we require a few preliminary definitions.
We use cl(K) to denote the smallest set that contains Cr, each concept C' with
C(a) € A, and is closed under single negation and subconcepts. A type is a
subset t C cl(K) that satisfies the following conditions:

1. =Cetiff t ¢ C, for all =C € cl(T);
2.CnDetiff Cetand D et, forall CND e cl(T);
3. Cret.

We use tp(K) to denote the set of all types for K. A completion of A is an ABox
A’ such that

- AC A’ with Ind(A) = Ind(A);

— for each a € Ind(A), we have {C | C(a) € A'} € tp(K);

— r(a,b),r(b,c) € A" implies r(a,c) € A';

Ir.C € c(K), r(a,b) € A, and C(b) € A’ implies (Ir.C)(a) € A'.

We use cpl(A) to denote the set of all completions for A. A match candidate
for a completion A’ € cpl(A) describes a way of distributing the query variables
among the different parts of the model. Formally, it is a mapping ¢ : Var(q) —
{a,a' | a € Ind(A)} such that

— if A(x) € ¢ and ((x) = a, then A(a) € A’;

if r(x,y) € ¢, {((z) = a, and ((y) = b, then r(a,b) € A';

— it r(z,y) € g C(2) = a, C(y) = b, and a # b, then r(a,8) € A
— r(x,y) € ¢ and ((x) = a' implies ((y) = a'.

For every r(x,y) € q with ((x) = a and ((y) = b' (where potentially a = b),
define a subset V' C Var(q) as the smallest set such that

—yev;
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— if r(a’,y') € q with 2’ € V, then ¢ € V;
— if r(2',y') € ¢ with y/ € V and ((2’) = b', then 2’ € V.

We use q|,(z,y) to denote the restriction of ¢ to the variables in V. Let Q¢ denote
the set of all queries g|,(5,,) obtained in this way. It is straightforward to verify
that all these queries are proper subqueries, i.e., Q¢ C sub(g).

A query annotation for A’ identifies the subqueries that do not have a match
in the counter-model that we construct. Formally, it is a map a : Ind(A) — 23b(@)
that satisfies the following conditions:

1. for every match candidate ¢ for A’, there is a query ql,(5,,) € Q¢ such that

Q|r(x,y) € a(a) where ((y) = al;
2. q € ala) for all a € Ind(A).

For each a € Ind(A), we use A’|, to denote the restriction of A’ to assertions of
the form C(a). The proof of the following lemma is similar to that of a closely
related result in [6].

Lemma 1. K £ q iff there is a completion A" of A and a query annotation o
for A’ such that for all a € Ind(A), we have Ky = |J a(a), where Ky = (T, A',).

Lemma 1 constitutes the announced reduction: to decide whether K |= ¢, we can
enumerate all completions A’ of A and query annotations « for A’, and then
perform the required UCQ entailment checks.

4 Characterization of Counter-models

It remains to decide whether K, = |Ja(a) holds for each a € Ind(.A). Since
a(a) may contain exponentially many different subqueries of ¢ (this is what
actually happens in the lower bound proved in [5]), it is challenging to do this
in CO-NEXPTIME. We start with a characterization of counter-models. In the
remainder of the section, for readability, we fix some a € Ind(.A), and we use Q
to denote a(a) and C, to denote [ 1{C | C(a) € A'}.

Many of the subsequent techniques and results will be concerned with trees
and tree interpretations, which we introduce next. Let X' be an arbitrary set.
Then a tree (over X with root p) is aset T = {p-w|w € S} where p € £* and
S C X* is a prefix-closed set of words. Each node w - ¢ € T, where w € T and
c € X, is a child of w. For anode w € T, |w| denotes the length of w, disregarding
the prefix p (so that the root of T' has length 0). We say the branching degree
of T is bounded by k if |{c€ ¥ |w-ce T} <k foral weT. A path in T, is
a (potentially infinite) sequence wq, wy, ... of elements from T such that (i) wy
is the root of T, and (ii) for each ¢ > 0, w; is a child of w;_1. If T is a tree
and f: T — S is a function with S finite, then we use max(7, f) to denote the
maximal number of distinct values that f can take on an arbitrary path in T

An interpretation 7 is a tree interpretation if AT is a tree. We introduce the
notation root(Z) to denote the root of the tree AZ. A tree interpretation Z is a
tree model of IC, if
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— T is a model of 7, and root(Z) € CZ,

—rT={(w,w-c)|w,w-ce AT Ace X}, and

— for all 3r.C € cl(K) and w € (3r.C)%, there is ¢ € X such that w - ¢ € CZ,
i.e., all relevant existential restrictions are satisfied in one step.

Given a tree interpretation Z and w € A%, we use Z|,, to denote the restriction
of 7 to the subtree rooted at w.

The following lemma shows that we can restrict our attention to tree-shaped
interpretations in which only polynomially many types appear on any given path.
As the proof of the lemma is surprisingly subtle, we defer it to the appendix of
a longer version of this submission [1]. Given an interpretation Z, we use tz(w)
to refer to the type of w € AT in Z, i.e. {C € cl(K) | w € CZ}.

Lemma 2. If K, £ |JQ, then there is an interpretation T such that:

1. T is a tree model of K., and T = |JQ, and
2. max(AT t7) < [cl(K)|.

To characterize counter-models, we employ marking of interpretations, simi-
lar to that in [5]. A marking simulates a top-down walk through a tree interpre-
tation Z greedily matching the variables of the queries in ). The marking fails
if we arrive at a subquery that is fully matched along this walk. As we show
next, the existence of a marking for a tree interpretation 7 is a necessary and
sufficient condition for 7 [~ |J Q.

For a query p and a variable z € Var(p), we say that z is consumed (in p) by
atypetif {A| A(z) € p} Ctand {y|r(y,x) € p} = 0. Given a type t € tp(K)
and a query p € sub(q), we denote by sub’(p) the set of all proper subqueries of
pt, where p! is obtained from p by removing all atoms involving a variable that
is consumed by t. In other words, subt(p) is the set of connected components in
the reduced query p'. Trivially, sub’(p) = {p} if ¢ does not consume any variable
in p.

The following lemma describes a single step of the top-down walk through a
tree interpretation.

Lemma 3. Assume a tree interpretation I, w € AT and any set P of queries.
Then I\ = U P iff there is a set P’ such that:

(i) P' contains some non-empty p' € sub™™)(p) for each p € P;
(ii) Z|w U P’ for each child w' of w in AT.

Proof. For the if direction, we show that if Z|,, = |J P, then there is no set P’
satisfying (i) and (ii). If Z],, E | P, then there is a match 7 in Z|,, for some
p € P. We show that then, for each p’ € sub’*®) (p), there exists a child w’ of w
such that Z|,+ admits a match for p’. This implies that there is no set P’, since
there is no possible choice of a subquery in Suth(w)(p) to be included.

Let 7w be a match for p in Z|,,, and let sub”(w)(p) denote the set of all proper
subqueries of the query p™(*) that results from p by dropping each atom involving
a variable x with w(z) = w. By definition of a match, each x € Var(p) with
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m(x) = w is consumed by t7(w). This implies that all atoms removed from p to
obtain p™®) are also removed to obtain p!Z(®), and thus each p’ € sub’*(*) (p) is
contained in some p” € sub™™)(p). Since  is a match for p, each p” € sub™™)(p)
has a match in Z|,s for some child w’ of w (in particular, 7 restricted to the
domain of 7|, is such a match), and so does each p’ C p”. This shows that, for
cach p’ € sub™ ™) (p), there exists a child w’ of w such that Z|, = p'.

For the other direction we show that if there does not exist a set P’ as above,
then Z|,, = U P. Assume that there is no P’ satisfying (i) and (ii). Then we
can select some p € P such that for each non-empty p’ € subtl(w)(p), there is
a child w’ of w with Z|, = p’, and we can select a match 7, in Z|,, for each
p’. Observe that each x € Var(p) that is not consumed by ¢7(w) occurs in some
p’ and is in the scope of some m,. It can be easily verified that a match = for
p can be composed by taking the union of all 7r1’), and setting 7(z) = w for all
remaining variables x. This shows Z|,, = p and Z|,, = J P. 0

We can now formally define the notion of a marking, which describes a top-
down walk through a whole tree interepretation.

Definition 1. Let I be a tree interpretation. A Q-marking for T is a mapping
p: AT — 259009 syuch that:

1. plroot(T)) = Q,

2. for each w € AT and each pair w-i,w-j € AT, p(w-i) = p(w - j),

3. for each w-i € AT, u(w-i) is a set containing a non-empty p’ € subtz(“’)(p)
for each p € p(w).

Using Lemma 3, we can characterize query non-entailment as follows:
Lemma 4. There is a Q-marking for a tree interpretation T iff T = |J Q.

Proof. For the if direction, assume Z = | J Q. We define a Q-marking p for Z
inductively:

— p(root(Z)) = Q,

— p(w-c) = p(w)’ for all w-c € AT, where pu(w)’ is a C-minimal set of subqueries
satisfying conditions (i) and (ii) of Lemma 3 (where we take P = p(w) and
P’ = p(w)).

Note that a suitable set p(root(Z))" exists for the children of the root because
T = UQ. Then at each step w - ¢, condition (ii) in Lemma 3 ensures that
Tlwe = Up(w - ). Applying the lemma again we ensure the existence of a
suitable set p(w - ¢)’ for the children of w - ¢. It is trivial to verify that u satisfies
the conditions in the definition of @-marking (in particular, for condition 3 we
use condition (i) in Lemma 3).

The other direction follows easily from the first condition in Definition 1,
which ensures that the root is always marked with @, and the following claim:

(%) If p is a Q-marking for Z, then Z|,, ¥ |Ju(w) for every w € AZ.
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To show (x), we assume for a contradiction that u is a @-marking and that
T|w U p(w) for some w € AT, That is, Z|,, = p for some p € p(w). Among all
such pairs (w,p), we select one with minimal |Var(p)|, i.e., such that |Var(p)| <
[Var(p')| for every w’ € A% and every p' € u(w') such that Z|, = p'. In the
case where t7(w) consumes no variable in p, we have that for every child w’
of w, p(w) = p(w’) and Z|, = p iff Z|,» = p. We can iteratively apply this
argument to choose a w* € AZlv (either w itself or a first descendant where some
variable is consumed) such that ¢z(w*) consumes some z € Var(p), Z|.+ = p,
and p(w*) = p(w). The fact that tr(w*) consumes some x € Var(p) ensures
[Var(p')| < [Var(p)| for every p’ € sub™")(p). Since p is a Q-marking for Z and
p € pu(w*), by conditions 2 and 3 in Definition 1, there must be some non-empty
P € sub(®)(p) such that p’ € p(w') for all children w’ of w*. We know from
Lemma 3 that 7|~ = {p} implies that Z|, = {p’} for some child w’ of w*. But
as |Var(p')| < |Var(p)|, this is a contradiction. 0

We have shown that UCQ non-entailment reduces to deciding the existence of
a marking. The following lemma will help us to show that the latter problem can
be decided in NEXPTIME. It shows that, even though there can be exponentially
many queries in @, the query set changes only a few times on each path of a
marked interpretation. More precisely:

Lemma 5. If T [~ JQ, then T admits a Q-marking p with max(AZ, u) <
[Var(q)|* + 1.

Proof. Let p be the Q-marking defined in the proof of Lemma 4. We consider
an arbitrary path wq,ws,... in Z, and show that | = [{u(w1), w(ws), ...}|
< |Var(q)|? + 1. We let J = {i | u(w;) # p(wir1)}. We will show that |J| < |q|%.
The desired bound will follow from this and the fact that | < |J| + 1. Let
t; = tz(w;) for all i > 0. We say a query ¢’ is i-matched if ¢’ has a match in Z;
but not on Z;_;, where Zj, is defined by setting (i) AT* = {(1,¢1),..., (k. tx)};
(ii) 72x = {((i,ts), (4, t;)) | 4 > i}; (i) AT* = {(i,t;) | A € t;} for all A € Nc.
Note that, for any query ¢’, there is at most one index 4 such that ¢’ is i-matched.
For each pair z,y € Var(q), let g|*¥ be the query that is obtained by restricting
qlz}, to the variable y and the variables that reach y in the graph G,. Let
X = {q|®¥ | z,y € Var(q)}. Note that | X| < |Var(q)|>. We now show that for
each ¢ € J, there exists some ¢’ € X such that ¢’ is --matched. Since there is at
most one i for each ¢, this implies |J| < |X| < |¢|? and the bound follows.
Consider an arbitrary ¢ € J. Then p(w;) # p(w;41) implies that for some
P € w(w;), u(wiyr) contains some p”’ # p' from sub™™)(p/), and some z €
Var(p’) is consumed by ¢7(w;). By definition, the query p’ is a proper subquery
of some p € (). Observe that, if we restrict our attention to p and its subqueries,
the marking p ‘moves’ to a strictly smaller subquery at every type that consumes
some variable. Let M be the set of source variables in the query graph G, of
this p, i.e. M = {y € Var(p) | {y' | (v, y) € p} = 0}. It is not hard to see that,
if € Var(p') is consumed by tz(w;), each ¢|¥* with y € M has a match in Z;.
To see that there exists at least one y € M such that ¢|¥* is i-matched, assume
towards a contradiction that there is some j < ¢ such that each ¢|¥* has a match
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in Z;, and take the smallest such j. Then all variables that reach = in G, are
consumed by some type on the path to w;, and w; is marked with some p” C p
where {y | 7(y,z) € p”} = 0. As z is consumed by t7(wj;), then the markings of
all descendants of w; contain some subquery of p” where x does not occur. This
contradicts the fact that p’ € p(w;) and = € Var(p'). a

As a direct consequence of Lemmas 2, 4 and 5, we obtain the following charac-
terization of counter-models; this is the basis of our UCQ entailment algorithm.

Theorem 1. I, [~ U Q iff there is a tree interpretation T such that:

(A) T is a model of K, with max(AT, t7) < |cl(K)|;
(B) T admits some Q-marking . and max(AZ, 1) < [Var(q)|* + 1.

By removing domain elements not needed to satisfy existential restrictions from
cl(K), it is standard to show that we can assume the interpretation Z from
Theorem 1 to have branching degree at most |cl(KC)].

5 Witnesses of Counter-models

By Theorem 1, K, ¥~ |JQ can be decided by checking whether there is a tree
interpretation that satisfies conditions (A) and (B). As we show next, the exis-
tence of such an interpretation Z is guaranteed if we can find an initial part of 7
whose depth is bounded by di , := |cl(K)| x (|Var(q)|? + 1). Since the branching
degree of 7 is linear in the size of K, this initial part is of at most exponential
size. A nondeterministic exponential time procedure for checking K, ¥~ |J@Q is
then almost immediate. We represent initial parts of countermodels as follows.

Definition 2. A witness for “IC, = JQ” is a node-labeled tree W = (T, T, p)
where 7: T — tp(K) and p: T — 2309 | such that:

The branching degree of T' is bounded by |cl(KC)].

For each w € T, |w| < dic 4.

max(T,7) < |cl(K)| and max(T, p) < |Var(q)|* + 1;

{C| C(a) € A} C7(e) and p(e) = Q for the root e of T.

For all w € T with |w| <dk 4 and Ir.C € T(w), there is a child w' of w with

Cer(w).

6. For eachw € T and each child w' of w, =3r.D € 7(w) implies {-D,—-3r.D} C
T(w').

7. For each pair wy,wy of children of w, p(w1) = p(ws) is a set containing some

nonempty p' € sub’(p) for each p € p(w).

Cuds fo o

An initial part of a tree interpretation represented by a witness can be unravelled
into a tree interpretation that satisfies (A) and (B) of Theorem 1, thus witnessing

KalFUQ.
Theorem 2. I, [~ | Q iff there exists a witness W for “K, = JQ7.
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Proof. For the ‘only if’ direction, by Theorem 1 there exists a tree-model Z of
K. and a Q-marking u for Z such that max(AZ,t7) < |cl(K)|, max(AZ, u) <
[Var(q)|? + 1, and the branching degree of Z is at most |cI(K)|. We can obtain
a witness by restricting Z and p to the first di 4 levels. More precisely, W =
(T, ,p) is obtained by setting:

- T={we AT | jw| <dikq};
- 7(w) = tz(w) and p(w) = p(w) for all w € T.

For the other direction, observe that a witness W = (T, 7, p) is almost a
@-marked model of C,, except a node w € T with |w| = dx , may not have the
children it needs to satisfy the existential restrictions. However, since the path
from the root to w has di 4+ 1 nodes and due to (3) in Definition 2, there exists
a pair of nodes on this path that share the same type and query set. This allows
us to obtain a tree-model and a @Q-marking by unraveling W as follows.

For each node w € T, let s(w) be the shortest prefix of w such that 7(s(w)) =
7(w) and p(s(w)) = p(w). Let D C T* be the smallest set of such that:

- the root of T" belongs to D, and
- ifwg -+ wy, € D, then wq - - -w,w € D for all children w of s(w,,).

Consider the following interpretation Z and marking pu:

- AT =D:;

- AT ={wg---w, € AT | A€ 7(v,)} for all concept names A;
-t ={(wo+wp—1,wo - wy) | wo - w, € AT}

- w(wo - - -wy,) = p(wy,) for all wy - - w, € AL,

It is easy to check that p is a @-marking for Z. To see that Z is model of K,
observe that for each node w € T with |w| = dk 4, there is a proper prefix w’
of w such that s(w’) # w’. This means that such a w will never be added to a
path in AZ. This implies that each wp - - w, € A has |w,| < dx 4 and hence
satisfies all the existential restrictions. 4

We can check for the existence of a witness by nondeterministically guessing an
(exponential size) candidate structure W = (T, 7, p) and then verifying condi-
tions (1-7) in Definition 2. The latter is feasible in time exponential in |K| and
|g]. Hence, K, [~ |JQ can be decided nondeterministically in time exponential
in |K| and |g|.

For the overall algorithm, observe that each completion A’ of A is of size
polynomial in || and |g|, while the size of a(a) is at most exponential in ||
and |g| for each a € Ind(A). Thus, using Lemma 1, checking K }~ ¢ is trivially in
NEXPTIME provided that checking IC, f= |Ja(a) is NEXPTIME. By combining
this with the matching lower bound in [5], we get:

Theorem 3. CQ entailment over S KBs with one transitive role, and no other
roles, is CO-NEXPTIME-complete.
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6 Conclusion

We believe that Theorem 3 can be extended to the case where there is an arbi-
trary number of roles, both transitive and unrestricted ones. This requires the
combination of the techniques presented in this paper with the ones developed
in [5]. In particular, different roles used in a query p € @ induce a partitioning
of p into different “clusters”, and each cluster can be treated in a similar way as
an entire, unpartitioned query p € ) in the current paper. Since the technical
details, which we are currently working out, can be expected to become some-
what cumbersome, we believe that it is instructive to first concentrate on the
case of a single transitive role as we have done in this paper.

It is interesting to note that the techniques from this paper can be used
to reprove in a transparent way the EXPTIME upper bound for CQ answering
over S knowledge bases that contain only a single concept assertion and no role
assertions from [5]—restricted to a single transitive role, of course. In the case
of such ABoxes, we do not need the machinery from Sections 3 and 5, nor the
(subtle to prove) Lemma 2. The essential technique is @-markings, which can
be simplified to maps from AZ to sub(q) instead of to 25ub(a) hecause @ is a
singleton that consists only of the input query. By Lemma 4, it suffices to check
for the existence of a tree-shaped interpretation Z along with a @-marking for
Z. This can be done by a standard type-elimination procedure.
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Abstract. In this paper we outline an algebraic tableau algorithm for the DL
SHOQ, which supports more informed reasoning due to the use of semantic
partitioning and integer programming. We introduce novel and adapt known op-
timization techniques and show their effectiveness on the basis of a prototype
reasoner implementing the optimization techniques for the algebraic approach.
Our first set of benchmarks clearly indicates the effectiveness of our approach
and a comparison with the DL reasoners Pellet and HermiT demonstrates a run-
time improvement of several orders of magnitude.

1 Motivation

Nominals play an important role in Description Logics (DLs) as they allow one to
express the notion of identity and enumeration; nominals must be interpreted as sin-
gleton sets. An example for the use of nominals in SHOQ would be Eye_Color =
Green U Blue LI Brown U Black LI Hazel where each color is represented as a nominal.
The cardinality of Eye_Color is restricted to have at most 5 instances, i.e., the above-
mentioned nominals. Qualified cardinality restrictions (QCRs) allow one to specify
lower (= nR.C) and upper (< nR.C) bounds on the number of elements related via a
certain role with additionally specifying qualities on the related elements. Due to the in-
teraction between nominals and QCRs the SHOQ concept > 6 has_color.Eye_Color is
unsatisfiable. Each nominal must be interpreted as a set with the cardinality 1 (and thus
can be used to enumerate domain elements), whereas an atomic concept is interpreted
as a set with an unbounded cardinality. Moreover, the quasi-tree model property, which
has always been advantageous for DL tableau methods, does not hold for SHOQ.

Resolution-based reasoning procedures were proposed in [8] and were proven to be
weak in dealing with QCRs containing large numbers. Hypertableaux [9] were recently
studied to minimize non-determinism in DL reasoning with no special treatment for
QCRs. These approaches and standard tableau techniques suffer from the low level
of information about the cardinalities of concepts and the number of role successors
implied by nominals and QCRs (e.g., see the example above) because these algorithms
treat these cardinalities in a blind and uninformed way.

Our early work on performance improvements for reasoning with QCRs for the
DL SHQ was based on a so-called signature calculus [5] and, alternatively, on alge-
braic reasoning [6] (not applicable to Aboxes). Our algebraic approach represents the
knowledge about implied cardinalities as linear inequations. The advantages of such
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an approach have been demonstrated in [4] where an Abox calculus combining tableau
and algebraic reasoning for SHQ is presented that dramatically improves the runtime
performance for reasoning with QCRs. This paper extends this line of research [1, 3, 4]
to SHOQ. This calculus [2] is by no means a simple extension because (i) the quasi-
tree model property is lost, (i) QCRs cannot be dealt with locally anymore, and (iii)
possible interactions between QCRs and nominals need to be considered globally.

2 The Description Logic SHOQ

Let N¢, Ng be non-empty and disjoint sets of concept and role names respectively. Let
N, C Nc be the set of nominals, and Ng+ C Ny the set of transitive role names. An RBox
R is a finite set of role inclusion axioms (RIAs) of the form R C S, where R, S are role
names in Ng. With C, we denote the reflexive transitive closure of C on R. A role name
R is called simple if it is neither transitive nor has a transitive subrole. A TBox 7 is a
finite set of general concept inclusion axioms (GCIs) of the form C T D, where C, D
are concepts, and C = D abbreviates {C C D, D C C}. The set of SHOQ concepts is
the smallest set such that: (i) A € N is a concept, and (ii) if C, D are concepts, R € Ny,
and § € Ny is a simple role then ~C, (C U D), (C 1 D), (AR.C), (VR.C), (= nS.C),
(£ nS.C) with n € N are also concepts. We use T (L) as an abbreviation for A LI A
(AN =A) and > nS (< nS) for > nS.T (< nS.T). We do not consider descriptions of
the form JR.C as they can be converted to > 1 R.C, without imposing the simple role
restriction.

We assume a standard Tarski-style interpretation 7 = (47, -7) such that AZ ¢ 47
for A € N¢, RY € A% x A% for R € Ng. Using # to denote the cardinality of a set, we
define the set of R-fillers for a given role name R and an individual s as FIL(R, s) =
{t € 47| (s,ty € R’} and the set of all R-fillers as: FIL(R) = |Jsar FIL(R, s). The
semantics of SHOQ concept descriptions is such that (C 1 D)! = C* n D%, (CuD)! =
Ct u DL (=) = 47\ CL #o! = 1forallo € N,, YRC)! = (s € 4 |(s,1) €
RE = teCl),ARCY ={sed|A:(s,t) e R”EAt e CT),(>nS.C)Yf ={(se
AT |#FIL(S, s) N CT) > n}, (< nS.C)! = {s € AT |#(FIL(S, s) N CT) < n).

Let KB(7,R) denote a SHOQ knowledge base consisting of a TBox 7~ and an
RBox R. The KB(7", R) is said to be consistent iff there exists an interpretation I satis-
fying CY € D’ foreach CE D € 7 and RY C S” for each RC S € R. In this case, I
is said to be a model of KB(7",R). A concept C is said to be satisfiable w.r.t. KB(7~, R)
iff T # 0. T is called a model of C w.r.t. R and 7. A SHOQ ABox A is a finite set
of concept membership assertions of the form a : C or role membership assertions of
the form (a, b) : R with a, b two individual names. An Abox A is said to be consistent
w.r.t. KB(7, R) if there exists a model 7 of 7~ and R such that a’ € C? is satisfied for
each a: C in A and (af,b’) € R? for each (a,b) : R in A. Using nominals, concept
satisfiability and ABox consistency can be reduced to KB consistency. Hence, without
loss of generality we restrict our attention to KB consistency in the following.

We assume all concepts to be in their negation normal form (NNF). We use -C to
denote the NNF of —C and nnf(C) to denote the NNF of C. When checking KB(7", R)
consistency, the concept axioms in 7~ can be reduced to a single axiom T T Cg such
that Cy abbreviates [ |ccpes nnf(—C L D). A TBox consistency test can be checked by
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testing the consistency of o C Cs with 0 € N, new in 7, which means that at least
o' € C;% and Cs* # 0. Moreover, since T/ = 4% then every domain element must
also satisfy Cy (every domain element is a member of Cy).

3 Algebraic Tableau for SHOQ

Given KB (77, R), such that we have T & Cys, we apply a rewriting algorithm (see
[2] for details) to Cy which returns C7- and extends R with role inclusion axioms.
This rewriting transforms all QCRs of the form > nR.C or < nR.C, where C can be
also equal to T, into unqualified cardinality restrictions of the form > nR’ (< nR’) by
using a new role-set difference operator (V) and adding universal restrictions using
newly introduced subroles (R’ C R). Roughly speaking, > nR.C is transformed into
>nR' MVYR'.C with adding R" T RtoR,and < nR.C into < nR' MVYR'.CMIY(R\R').-C
with adding R’ C R to R. In both cases R’ is always fresh in R, and the transformation
is satisfiability-preserving (see [2] for a proof and more details). The semantics of the
role-set operator is defined such that (V(R\S).D)! = {s e A |(s,t) e RF N (5,) ¢ ST =
te D).

3.1 Partitioning domain elements

The key technique and major difference between algebraic and standard tableau reason-
ing for SHOQ is the atomic decomposition technique [10] which is used to compute
a partitioning of domain elements into disjoint subsets allowing numerical restrictions
implied by QCRs and nominals to be encoded into sets of inequations.

Let H(R) denote the set of role names for all subroles of R € Ngr: H(R) = {R’|R’ C.
R}. For technical reasons we do not add R to H(R) since R is a superrole for elements
in H(R) and R does not occur in number restrictions anymore after preprocessing. For
every role R” € H(R), the set of R’-fillers forms a subset of the set of R-fillers (FIL(R")C
FIL(R)). We define R’ to be the complement of R’ w.r.t. H(R), the set of R’-fillers is then
defined as I?—ﬁllers =(FIL(R) \ FIL(R')). Since we do not have > nR or < nR concept
expressions using role complements, no role complement will be explicitly used. For
ease of presentation, we do not list role complements.

Qualifications on Role fillers: The atomic decomposition must also consider when
FIL(R) intersects with the interpretation of a qualifying concept. A qualifying concept
D is a concept used to impose a qualification, D, on the set of R-fillers for some role
R € Ni. Let Qc(R) = {D|VS.D occurs in C+ with R C, S € R} be the set of qualifying
concepts for R € Ng. Since D € Qc(R) could be a complex expression or a nominal, and
for ease of presentation, we assign a unique qualification name g for each D € Q¢(R).
Let Qn be the set of all qualification names assigned, and Qc = Ugen, Qc(R) be the
set of qualifying concepts in C. We maintain a mapping between qualification names
and their corresponding concept expressions using a bijection 6 : Qy — Qc; in case a
nominal 0 € N, has been used as a qualifying concept expression then o is also used
as the qualification name and 6(0) = o. Let On(R) denote the set of qualification names
for a role (R € Ng) then On(R) is defined as On(R) = {g € Qn 1 6(g) € Oc(R)}.
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We define Q. = {=D|D € Qc} as the set of negated qualifying concepts in their
NNF. A mapping - is maintained between Qc and Q. such that given a qualifying
concept D € Qc, ~o(D) = D with =D € Q..

Interaction with Nominals: For each nominal o € N,, o can interact with R-fillers
for some R in Ny such that (of C FIL(R)). Also the same nominal o can interact with
R-fillers and S-fillers for R, S € N such that R, S do not necessarily share subroles or
superroles in R. This means that R-fillers and S-fillers could interact with each other
due to their common interaction with the same nominal o. These interactions lead to
the following definitions.

Definition 1 (Decomposition Set). Given a role R we define the decomposition set for
R-fillers as Dg = H(R) U Qn(R) U N,. Dy is a decomposition set since each subset P of
Dr defines a unique set of nominals, roles, and/or qualification names that admits zﬂin—
terpretation P* = (oepr, 0° NNieny\p 7" NNrreparry FILR )N rreqcrnp) FILR)N
MpePnay® 6(p)' n ﬂqe(QN(R)\P)(—"'H(q))I. For all sets P, Q C Dy with P # Q, it holds by
definition that PY # Q7. This makes all P/ with P C D disjoint with one another and
the set of all P with P C D, defines a partitioning of Dg.

Definition 2 (Global Partitioning). Let DS = ({Ugen, DrUN)I\{-C [{C,~C} C Oc)'.
The set P = (P|P C DS} defines a global partitioning of DS and P’ = A7 because
it includes all possible domain elements which correspond to a nominal and/or a role
filler: P7 = Upcps PL.

3.2 Encoding Numerical Restrictions into Inequations

Given 7~ and a partitioning # for DS, one can reduce the satisfiability of expressions
of the form (> nR) and (< mR) and the satisfiability of the nominals semantics into
inequation solving based on the following principles.

Mapping Cardinalities to Variables A variable name v is assigned for each par-
tition name P such that v can be mapped to a non-negative integer value n using
o : V — N with o(v) denoting the cardinality of PZ. Let V be the set of all variable
names and a : V — P be a one-to-one mapping between each partition name P € P
and a variable v € V such that a(v) = P, and if a non-negative integer n is assigned to
v using o then o(v) = n = #P. Given L C DS, let V; denote the set of variable names
mapped to partitions satisfying L, V; is defined as

{veV|pea®)foreach p e (LN Nr)}N
Vi =|{veV]og € a) for each og € (LN (N, UQN))}N
{vevV]|oq ¢ av) for each —oq € L, og € (N, U Qn))}

Encoding Inequations Since the partitions in # are mutually disjoint the cardinal-
ity of a union of partitions is equal to the sum of the cardinalities of the partitions (e.g., if
Py, Py € P, then #(P,UP;) = #P; +#P,) and one can encode a cardinality restriction on
a partition’s elements into an inequation using & such that (L, >,n) = 3,cy, o(v) 2 n,
and (L, <,m) = Y,ey, 0(v) < m where L € DS. With SHOQ we distinguish and
encode the following cardinalities: (i) Concepts of the form (> nR) and (< mR) in the
label of a node x express cardinality bounds n and m, respectively, on the set FIL(R, x)

! When C and ~C are both used as qualifying concepts, we only include C in DS.
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for some R € Nr. These bounds can be reduced into inequations using &(L, >, n) and
&(L,<,m) for L = {R} or L = {R, g}, if additionally, we have VS.C such that (R C, §)
with C € DS and 6(q) = C. (ii) Nominals represent singleton sets. This cardinal-
ity bound can be encoded into inequations using £({o}, >, 1) and £({o}, <, 1) for each
nominal 0 € N,. When cardinalities (i) and (ii) are both encoded into inequations, the
interaction between nominals and role fillers is handled while preserving the semantics
of nominals.

Getting a Solution Given a set & of inequations, an integer solution defines the
mapping o for each variable v occurring in & to a non-negative integer n denoting
the cardinality of the corresponding partition. For example, assuming o(v,) = 1 and
a(vy) = {R1, Ry}, this means that the corresponding partition (a(v))! must have 1 el-
ement; #(FIL(R;) N FIL(R,)) = 1. Additionally, by setting the objective function to
minimize the sum of all variables, a minimum number of role fillers is ensured at each
level. A solution o then defines a distribution of individuals that is consistent with the
numerical restrictions encoded in &.

3.3 Tableau Algorithm

The tableau algorithm described in this section relies on an inequation solver working
together with tableau expansion rules to construct a representation of a tableau model
using a compressed completion graph.

Definition 3. [Compressed Completion Graph] A (CCG) is a directed graph G = (V, E,
L, Lr, Lp), where nodes represent domain elements and the edges between the nodes
represent role relations. Each node x € V is labeled with three labels: £(x), Lg(x) and
Lp(x), and each edge (x,y) € E is labeled with a set, £({x,y)) C Ng, of role names.
L(x) denotes a set of concept expressions, L(x) C clos(7"), that the domain element,
iy, represented by x must satisfy. £p(x) denotes a non-atomic partition name (i.e., we
consider the set Lp(x) as a name) and is used as a tag for x based on the partition that i,
belongs to. A partition name Lp(x) C DS can include roles, nominals, or qualification
names.

When a role R € Ny appears in Lp(x) this means that i, belongs to the partition
for R-fillers and can therefore be used as an R-filler. When a nominal o € N, appears
in £p(x) this means that i, € o, and o is added to £(x) when x is created. On the
other hand if a nominal i € N, does not appear in Lp(x) this means that i, satisfies
the complement of i, i, € (=i)f and (—i) is added to £(x) when x is created (see fil-
Rule). When a qualification name g € Qy appears in Lp(x) this means that i, satisfies
the qualifying concept mapped to ¢, i, € 6(g)’ and 6(g) is added to £(x) when x is
created. As with the nominals case, if a qualification name p € Qy does not appear
in Lp(x) this means that i, satisfies the complement of the qualifying concept mapped
to p, iy € %(G(p))f and —0(p) is added to L(x) when x is created (see fil-Rule). Using
Lp(x) as a tagging allows for the re-use of nodes instead of creating new ones.

Lg(x) denotes a set &, of inequations that must have a non-negative integer solu-
tion. The set &, is the encoding of number restrictions and qualifications that must be
satisfied for x. In order to make sure that numerical restrictions local for a node x are
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satisfied while the global restrictions carried with nominals are not violated, the in-
equation solver collects all inequations and variable assignment in Lg before returning
a distribution. This makes sure that an initial distribution of nominals and/or role fillers
is globally preserved while still satisfying the numerical restrictions (a distribution of
role fillers) at each level.

Definition 4. [Proxy node] A proxy node is a representative for the elements of each
partition. Proxy nodes can be used since partitions are disjoint and all elements within
a partition P satisfy common restrictions (see [2] for proofs).

Let us assume that KB(7", R) such that 7~ has been preprocessed and rewritten into
C7-. To check KB consistency, the algorithm starts with the completion graph G =
({ro}, 0, L, Lg). With Lg(r,) = Uen, {£(0, <, 1), (0, 2, 1)} which is an encoding of the
nominal semantics into inequations. The node ry is artificial and is not considered as part
of the tableau model, it is only used to process the numerical restrictions on nominals
using the inequation solver which returns a distribution for them.

The distribution of nominals is processed by the fil-Rule which is used to generate
individual nodes depending on the solution (07) returned by the inequation solver. The
fil-Rule rule is fired for every non-empty partition P using o-(v). It generates one proxy
node y as the representative for the m elements assigned to P! by the inequation solver.
In the case of nominals, m is always equal to 1. The node y is tagged with its partition
name using a(v) in Lp(y). The set of inequations is accumulated in Lg(y). Nominals
and qualifications satisfied by the partition elements are extracted from the partition
name and added to L(y). C7- is also added to L(y) to make sure that every node created
by the fil-Rule also satisfies C-.

After at least one nominal is created, G is expanded by applying the expansion rules
given in Fig. 1 until no rules are applicable or a clash occurs. The M-Rule, LI-Rule, V-
Rule and the V,-Rule are similar to the ones in [1, 7]. The V\-Rule is used to enforce the
semantics of the role set difference operator V\ introduced at preprocessing by making
sure that all R-fillers are labelled. The ~-Rule encodes the numerical restrictions in the
label £ of a node x, for some role R € N, into a set of inequations maintained in Lg(x).
The inequation solver is always active and responsible for finding a non-negative integer
solution o or triggering a clash if no solution is possible. If the inequations added by this
rule do not trigger a clash, then the encoded at-least/at-most restriction can be satisfied
by a possible distribution of role fillers. We distinguish two cases.

Case (i): R-fillers of x must also satisfy a qualifying concept C due to a VS.C re-
striction on a role § such that R C, S and C is either a nominal or a qualifying concept
such that §~(C) in DS. Then the numerical restriction is encoded on partitions P € P
with PY C (CT n FIL(R)) which means {R, 6~ (C)} C P.

Case (ii): There exist no qualified restrictions on R-fillers of x due to a V restriction
on a role S such that R C, S. In this case the numerical restriction is encoded on
partitions P € P with P/ C FIL(R) which means {R} C P.

ch-Rule. This rule checks for empty partitions while ensuring completeness of the
algorithm. Given a set of inequations in the label Lg(x) of a node x and a variable v
such that a(v) = P and P € P we distinguish between two cases.

(i) PY must be empty (v < 0); this happens when restrictions on elements of this
partition trigger a clash because the signature of P cannot be satisfied. For instance,
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M-Rule If Cn D € L(x), and {C,D} £ L(x)
Then set L(x) = L(x) U {C, D}.
U-Rule If CUD € L(x),and {C,D} N L(x)=0
Then set £L(x) = L(x) U {E} with E € {C, D}.
V-Rule If VR.C € L(x) and there exists y such that L({x,y)) N (H(R) U{R}) # 0, and C ¢ L(y)
Then set L(y) = L(y) U {C}.
¥,-Rule If YR.C € L(x) and there exists y such that L({x,y)) N(H(S)U{S}) # 0, S € Ng+ with
S C. R,and ¥S.C ¢ L(y)
Then set L(y) = L(y) U {VS.C}.
»-Rule If (< nR) € L(x) for e {<, >},
Then If VS.C € L(x) with RC, S and é({R, 07 (C)}, >, n) & Lg(x)
Then set Lg(x) = Le(x) U {£({R, 67 (C)}, q, n)}.
Else If £({R}, >4, n) ¢ Lg(x)
Then set Lr(x) = Lg(x) U {£{R}, >4, n)}.
ch-Rule If there exists v occurring in Lg(x) such that {v > 1,v <0} N Lg(x) =0
Then set Lg(x) = Leg(x) U{V}L Ve{v>1,v<0hL
e-Rule If (< nR) € L(x), and there exists y such that R € Lp(y) and R ¢ L({x,y))
Then If VS.C € L(x) with RC, S and 8~ (C) € Lp(y), ORVS.C ¢ L(x) withRLC, S
Then set L((x,y)) = L({x,y)) U {R}, and
If L(x)¢ Le(y) Then set Le() = Le() U Le(x).
fil-Rule If there exists v occurring in Lg(x) with o-(v) = m and m > 0, and there exists no y
with Lp(y) = a(v)
Then 1. create a new node y, 2. set Lp(y) = a(v), 3. set Lg(y) = Lg(x), 4. set L(y) =
Uoetainny 2 Y Uiewaon 7Y Uge@yneon @) Y Upe@y@ynamy 708(p) Y ICH}
V\-Rule If V(R\S).C € L(x), and there exists y such that L({x, y)) N(H(R)U{R}) # 0, L({x,y))N
(HS)U{S}) =0,and C ¢ L(y)
Then set L(y) = L(y) U {C}.

Fig. 1. Completion rules for SHOQ (in groups of decreasing priority from top to bottom)

if {YR;.A,VRy.-A} C L(x), vg,r, = 1 € Lg(x) and there exists a node y with Lp(y) =
{R1, Ry} and {Ry, Ry} C L({x,V)), the qualifications on R; and R,-fillers trigger a clash
{A,=A} C L(y) and vgg, < 0 is enforced.

(i) P7 must have at least one element (1 < m < o(v)); if P! can have at least
one element without causing any logical clash, this means that the signature of P is
satisfiable and we can also have m elements in P? without a clash.

e-Rule. This rule creates the edges between the proxy nodes created by the fil-Rule.
If > nR € L(x) for some R, this means that x must be connected to a number r of R-
fillers such that n < r. If < mR € L(x) then x could be connected to a maximum number
r’ of R-fillers such that < m. If there exists a node y such that R € Lp(y), this means
that a distribution of R-fillers has been assigned by the inequation solver such that the
numbers 7 and m are satisfied and y is a representative for a number p of R-fillers such
that r < p < r’. We distinguish between two cases.

(1): R-fillers of x must also satisfy a qualifying concept C due to a VS.C restriction
on a role S such that R C, S. In this case, if 67(C) is also in Lp(y) then the partition
represented by y intersects with CZ and y is a member of C.
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(i1): There exists no qualified restrictions on R-fillers. In this case there is no restric-
tion on the partitions intersecting with R-fillers.

In both cases, an edge can safely be created between x and y such that R € L({x, y))
and this edge is also a representative for the number p of edges between x and the p
elements represented by y. If S is also in Lp(y) this means that the p R-fillers repre-
sented by y are also S -fillers and y is a representative for a partition p € P such that
pI C FIL(R) N FIL(S). Therefore y can be re-used to connect x or another node y
having > n’S or < m’S, n’ < nand m’ > m, in their label.

Definition 5. [Strategy of Rule Application] Given a node x in the completion graph,
the rules are triggered when applicable based on the following order (listed with de-
creasing priority) in order to ensure completeness of the algorithm (see [2] for details):
1. M-Rule, U-Rule, ¥Y-Rule, ¥, -Rule, ch-Rule, »-Rule, e-Rule. These rules can be fired
in arbitrary order. 2. fil-Rule. 3. ¥\-Rule.

Definition 6. [Clash] A node x in (V' \ {ry}) is said to contain a clash if: (i) {C,-~C} C
L(x), or (ii) a subset of inequations &, € Lg(x) does not admit a non-negative integer
solution, this case is decided by the inequation solver.

When no rules are applicable or there is a clash, a completion graph is said to be
complete. When G is complete and clash free it means that a model exists for KB(7, R)
satisfying the numerical and the logical restrictions; the algorithm returns that KB(7~, R)
is consistent, otherwise it returns that KB(7~, R) is inconsistent.

4 Optimizing Algebraic Tableau Reasoning

The main goal for introducing algebraic reasoning to DL is to efficiently handle reason-
ing with QCRs and/or nominals. Although global partitioning of domain elements gives
a worst-case double exponential algorithm (see [2] for proofs), one can exploit its high
level of information to adapt well known and devise new optimization techniques for
improving reasoning with nominals and QCRs. The atomic decomposition technique
allows a more semantically structured model construction algorithm which exhibits a
high level of information on cardinalities implied by QCRs and nominals.

The next two optimization techniques exploit simple interactions between so-called
“told nominals” and QCRs to discard unnecessary partitions and impose some ordering
on applying the ch-Rule for nominal variables.

Discarding Partitions This optimization aims at reducing the number of partitions
and their variables. It does this at the preprocessing level by collecting and analyzing
the following interactions between nominals and QCRs.

(i) We have > nR.C with C = o1 U- - -Uo, or C C o;U- - -Uo,. For example, > 1R.0 is
rewritten into > 1R’ MVYR’.o0 and this means that the partition for R’-fillers must intersect
with the partition for the nominal o and, therefore, the partitions for R’-fillers that do
not intersect with o can be safely discarded when computing the global partitioning.

(i) We have < nR.C with C = oy U --- U o, or C E o) U --- U o,. For example,
< 1R.0 is rewritten into < 1R’ M VYR’.0 M YR\R’.—o and similar to the case with > nR.C
the partitions for R’-fillers that do not intersect with o can be discarded. Additionally,
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the partitions for R-fillers that do not intersect with R’-fillers and intersect with o can
also be discarded.

Variable Preference For each nominal o, only one variable v € V,, can be assigned
> 1 by the ch-Rule. This heuristic aims at selecting nominal variables that are more
likely to succeed. It does this similarly to the case of discarding partitions and allows the
ch-Rule to branch on a partition, where nominals intersect with their interacting roles,
before branching on a variable, where these nominals do not intersect with the role
fillers. For example, we have two variables v; and v, for a nominal o with a(v;) = {0}
and a(v;) = {o,R’} and R’ is mapped to {o}. The variable-preference heuristic then
directs the ch-Rule to branch on v, > 1 before branching on v; > 1.

Skip UnSat ch-Rule This optimization affects the ch-Rule and aims at bypassing
choice points that are known to lead to a clash. For example, if the ch-Rule is applied to a
variable v, with o € a(v,) for o € N, and v < 0 for all v € V,,, this means that branching
on v, < 0 will result in a clash because the encoded inequation £(o, >, 1) for o becomes
infeasible. The branch for v, < 0 can be safely bypassed. If R € a(v,) for some R € Ng
and we have v < 0 for all v € Vg, then the branch for v, < 0 can therefore be safely
bypassed if v, occurs in an inequation encoding an at-least restriction. Similarly, the
branch for v, > 1 is discarded if assigning v, a value > 1 renders the inequation where
v, occurs obviously infeasible.

Using noGood Variables A variable v is assigned to be a noGood if v must have the
value zero. This can happen for a partition P where a(v) = P must be empty because no
domain element can be distributed over P without causing a clash. Using the ch-Rule
a semantic split is performed over each partition’s elements; v > 1 is the case when the
restrictions on the partition’s elements can be satisfied, and v < 0 means the restrictions
on the partition’s elements cannot be satisfied.

Skip UnSat OR-Rule This optimization affects the L-Rule and aims at bypassing
choice points that are known to lead to a clash. When the LI-Rule is applied to a node
y, the branch adding C to L(y) can be discarded for the following cases: (i) C is a
restriction > nR and all variables mapped to R are noGood variables, then choosing this
disjunct will result in an arithmetic clash. (ii) C is a nominal o and y is assigned to a
partition P intersecting with —o ({o} ¢ P). (iii) C is the complement of a nominal, —o,
and y is assigned to a partition P intersecting with o ({0} € P).

Dependency Directed Backtracking This is a well known optimization technique
which allows a search algorithm to bypass choice points. We identify three types of
clashes: the logical, OR, and arithmetic clash, and for each type a clash handler is
responsible for setting the next choice point to explore.

Logical Clash Handler If a node y has {C, -C} € £(y), y is said to contain a logical
clash. The logical clash handler analyzes the clash sources looking for alternative choice
points where the algorithm can backjump to. If no such alternative choice is found, then
y cannot survive without causing a clash. One can safely assume that the corresponding
partition represented in .L,(y) must be empty and the variable v with Lp(y) = a(v)
must be zero. The algorithm can backjump to the ch-Rule choice point where v < 0
and safely bypass the choice points with v > 1. Additionally, if the noGood variable
optimization is turned on, then v is also assigned to be a noGood variable.
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OR Clash Handler If we have —o LI =C € £(y) and we have o, C € Lp(y) then the
node y will not survive because all choice points generated by the LI-Rule will result in
a clash ({o, ~o} € L(y) or {C,—C} € L(y)). The node y is said to contain an OR-clash
and the variable v with Lp(y) = @(v) must be zero. The algorithm can backjump to the
ch-Rule choice point where v < 0 and safely bypass the choice points with v > 1. An
OR-clash can only be detected if the “Skip UnSat” optimization is turned on and the
OR clash handler cannot find alternative choice points because the applicability of the
OR-Rule returns an empty list of choice points, i.e., all choices would clash.

Arithmetic Clash Handler An arithmetic clash is detected when the system of
inequations cannot have a solution. The following arithmetic clashes can be detected
and handled even before running the Simplex procedure (i.e., as soon as inequations are
added by the a-Rule). Clash A: If there exists anode y € G such that é(L, >,m) € Lg(y)
andv < 0 € Lg(y) for all v € V (due to the ch-Rule), then &(L, >, m) is infeasible and
renders ¢, infeasible. Clash B: If there exists a node y € G such that £(L, >, m) € Lg(y)
and for all v € V;, v has been assigned a value o(v) (due to a previous distribution
o) such that }},¢y, o(v) does not satisfy m. Clash C: If there exists a node y € G such
that £(L, i, m) € Lg(y) and for some v, € V;, the ch-Rule must skip the branch where
v, = 1 because v, is a noGood and branching on v, < 0 triggers a clash of type A. In
all three cases the algorithm can backjump to a branching point for some v € V; where
v > 1 and v has not been assigned to be a noGood.

S Evaluation: First Experimental Results

Our prototype reasoner HARD (Hybrid Algebraic Reasoner for DL) is implemented
in Java and uses the OWL-API. We integrated the reasoner interfaces of Pellet v.2.0.0
[11] and HermiT v.1.1 [9] into our implementation and run KB consistency tests using
HARD, HermiT, or Pellet. This first evaluation was targeted to test how the algebraic
tableau in combination with the proposed optimizations scales for KBs exhibiting in-
teractions between nominals and QCRs. Unfortunately, there are not many suitable on-
tologies available because QCRs were only recently added to OWL 2 and the ones that
are available do not serve well as benchmarks for HARD because their potential diffi-
culty is not caused by interactions between nominals and QCRs. Furthermore, HARD
was designed as a research prototype to demonstrate the effectiveness of our algebraic
tableau approach and intentionally does not implement most of the optimization tech-
niques implemented by other DL reasoners. It is therefore not the focus of this paper to
evaluate HARD’s performance for real world ontologies due to the overhead necessary
to implement other optimization techniques not related to this line of research.

A typical nominal-QCR interaction occurs when a KB includes axioms of the form
C =o0,U---Uo, with 0y, ..., 0, nominals, and D C > mR.C or D C < mR.C with
n,m >0 in 7. Our claim is that these patterns are more likely to occur in real world
ontologies. For example, in a KB used to classify countries based on their spoken
languages one could find axioms of the form SSC = Argentina U Belize LI Bolivia LI
-+ U Venezuela (SSC stands for Spanish_Speaking_Countries) and South_America T
> 11 Includes.SSC 1M < 11 Includes.SSC, and Caribbean T > 3 Includes.SSC where

Argentina, . .., Venezuela are all distinct nominals representing unique countries.



Jocelyne Faddoul and Volker Haarslev. 171

600 3 20 1000

HARD V1.1
500 {-{A-Hormitv1.1 HARD vi.1 = HARD v1.1
Pelet 12,00 15| |+Hemitvia oo LJ ot vza0

Pelet v2.0.0 Hemit 1.1

Runtime (se

—a—n—8 | 0 B A 01

2 3 4 5 & 7 8 9 10 123456 7 8 91011 12 13 14 15 20 25 30 1151 101 151 201 251 301 351 401 451 501
Number of nominals Value of m in QCR of form >= m R.C

(a) Increasing nin 74 (n = m) (b) Increasing n in 75 (n = m) (c) Increasing m in 7 (log-
linear scale)

Fig. 2. Evaluation of HARD with HermiT and Pellet (all runtimes in seconds)

We developed two sets of benchmarks consisting of the simple TBoxes 74 and 75
defined below where o1, . . ., 0, are all disjoint nominals and n and m positive numbers:
Ta={C=o1U...U0,, DE>m+1)RC},Tp={C=0,1...U0, DE>mR.C}

In a first set of benchmarks we set n = m and increment n by 1. Notice that due
to the nominals semantics and their interaction with FIL(R), 74 is inconsistent because
the cardinality of FIL(R) can be at most n while 7 is consistent. The results of the
tests are shown in Fig. 2 (the runtimes were computed as the average of 10 independent
runs). For HARD all optimization techniques described above were switched on. In
the case of inconsistent KBs (Fig. 2(a)) one can easily see that HARD outperforms the
other reasoners whose performance quickly degrades even with small values of n. In
the case of consistent KBs (Fig. 2(b)) HARD performs similar to HermiT while Pellet’s
performance degrades. In a second set of tests for consistent KBs the size of m in 7p
increases but the number of nominals remains constant; we set n = 5 and increment
m by 50. Fig. 2(c) clearly demonstrates that HARD’s performance remains constant
while the performance of the other reasoners severely degrades as m grows (observe the
logarithmic scale for the runtime).

6 Conclusion and Future Work

We exploited the high level of information of the algebraic method and presented op-
timization techniques related to nominals, QCRs and their interactions. Our first ex-
perimental results show that algebraic reasoning outperforms existing DL reasoning
methods by several orders of magnitude, although we used small examples. One might
argue that these results are based on special case patterns, however, it is clear that such
patterns are inevitable for designing some real world ontologies. It is part of ongoing
work to report on performance improvements in more general cases. We are also work-
ing on extending our calculus to SHOZQ by additionally allowing inverse roles. Our
conjecture is that the worst-case complexity of our calculus might remain unchanged
and, thus, would become worst-case optimal for SHOI Q.
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1 Introduction

In real world applications where ontologies are employed, often the knowledge
engineer not only wants to know whether her ontology has a certain (unwanted)
consequence or not, but also wants to know why it has this consequence. Even
for ontologies of moderate size, finding explanations for a given consequence is
not an easy task without getting support from an automated tool. The task
of finding explanations for a given consequence, i.e., minimal subsets of the
original ontology that have the given consequence is called azxiom pinpointing in
the literature.

Existing work on axiom pinpointing in DLs can be classified under two main
categories, namely the glass-box approach, and the black-box approach. The
idea underlying the glass-box approach is to extend the existing reasoning algo-
rithms such that while doing reasoning, at the same time they can keep track
of the axioms used, and detect which of the axioms in the TBox are responsible
for a given consequence. In [24] a pinpointing extension of the tableau-based
satisfiability algorithm for the DL ALC has been introduced. Later in [19], this
approach has been further extended to DLs that are more expressive than ALC.
In [17] a pinpointing algorithm for ALC with general concept inclusions (GCIs)
has been presented by following the approach in [2]. In order to overcome the
problem of developing a pinpointing extension for every particular tableau-based
algorithm, a general pinpointing extension for tableau algorithms has been de-
veloped in [3,6]. Similarly, an automata-based general approach for obtaining
glass-box pinpointing algorithms has been introduced in [4, 5].

In contrast to the glass-box approach, the idea underlying the black-box ap-
proach is to make use of the existing highly optimized reasoning algorithms
wihout having to modify them. The most naive black-box approach would of
course be to generate every subset of the original TBox, and ask a DL reasoner
whether this subset has the given consequence or not, which obviously is very
inefficient. In [16] more efficient approaches based on Reiter’s hitting set tree
algorithm [23] have been presented. The experimental resuts in [16] demonstrate
that this approach behaves quite well in practice on realistic TBoxes written in
expressive DLs. A similar approach has successfully been used in [14] for explain-
ing inconsistencies in OWL ontologies. The main advantages of the black-box
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approach are that one can use existing DL reasoners, and that it is independent
of the DL reasoner being used. In [13] the black-box approach has been used
for computing more fine grained explanations, i.e., not just the set of relevant
axioms in the TBox but parts of these axioms that actually lead to the given
consequence.

Although various methods and aspects of axiom pinpointing have been con-
sidered in the literature, its computational complexity has not been investigated
in detail yet. Obviously, axiom pinpointing is at least as hard as standard rea-
soning. Nevertheless, especially for tractable DLs it makes sense to investigate
whether explanations for a consequence can efficiently be enumerated or not.
In [7] it has been shown that a given consequence can have exponentially many
explanations (there called MinAs, which stands for minimal aziom sets), and
checking the existence of a MinA within a cardinality bound is NP-hard even for
a fragment of £L that only allows for conjunction on both sides of a GCI. In [20—
22] we have investigated the complexity of axiom pinpointing in the propositional
Horn fragment, and in the tractable DL ££. We have given a polynomial delay
algorithm for enumerating MinAs in the propositional Horn setting that works
even if the MinAs are required to be enumerated in reverse lexicographic order.
We have also shown that for the dual-Horn setting, where the axioms have at
most one negative literal, this problem is at least as hard as the hypergraph
transversal enumeration problem, whose exact complexity is a prominent open
problem [12]. Moreover, we have shown that for ££ TBoxes MinAs cannot be
enumerated in output-polynomial time unless P = NP.

In the present work we investigate the complexity of axiom pinpointing in
the other family of tractable DLs, namely the DL-Lite family, which has been
very popular due to its success in efficiently accessing large data and answering
complex queries on this data [10,1]. For this family various aspects of finding
explanations have already been considered in [9, 8]. There the main focus is on the
problem of explaining query answering and ABox reasoning, which are the most
standard types of reasoning problems in the DL-Lite family. In particular the
authors investigate in detail the problem of determining why a value is returned
as an answer to a conjunctive query posed to a DL-Lite ABox, why a conjunctive
query is unsatifiable, and why a particular value is not returned as answer to
a conjunctive query. Complementary to the work in [9, 8] here 